版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
抽屜原理與排列組合.抽屜原理把4只蘋果放到3個(gè)抽屜里去,共有3種放法,不論如何放,必有一個(gè)抽屜里至少放進(jìn)兩個(gè)蘋果。同樣,把5只蘋果放到4個(gè)抽屜里去,必有一個(gè)抽屜里至少放進(jìn)兩個(gè)蘋果?!M(jìn)一步,我們能夠得出這樣的結(jié)論:把n+1只蘋果放到n個(gè)抽屜里去,那么必定有一個(gè)抽屜里至少放進(jìn)兩個(gè)蘋果。這個(gè)結(jié)論,通常被稱為抽屜原理。利用抽屜原理,可以說(shuō)明(證明)許多有趣的現(xiàn)象或結(jié)論。不過(guò),抽屜原理不是拿來(lái)就能用的,關(guān)鍵是要應(yīng)用所學(xué)的數(shù)學(xué)知識(shí)去尋找“抽屜”,制造“抽屜”,弄清應(yīng)當(dāng)把什么看作“抽屜”,把什么看作“蘋果”。【例1】一個(gè)小組共有13名同學(xué),其中至少有2名同學(xué)同一個(gè)月過(guò)生日。為什么?【分析】每年里共有12個(gè)月,任何一個(gè)人的生日,一定在其中的某一個(gè)月。如果把這12個(gè)月看成12個(gè)“抽屜”,把13名同學(xué)的生日看【例3】有規(guī)格尺寸相同的5種顏色的襪子各15只混裝在箱內(nèi),試問(wèn)不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無(wú)左、右之分)?【分析】試想一下,從箱中取出6只、9只襪子,能配成3雙襪子嗎?回答是否定的。按5種顏色制作5個(gè)抽屜,根據(jù)抽屜原理1,只要取出6只襪子就總有一只抽屜里裝2只,這2只就可配成一雙。拿走這一雙,尚剩4只,如果再補(bǔ)進(jìn)2只又成6只,再根據(jù)抽屜原理1,又可配成一雙拿走。如果再補(bǔ)進(jìn)2只,又可取得第3雙。所以,至少要取6+2+2=10只襪子,就一定會(huì)配成3雙?!纠?】一個(gè)布袋中有35個(gè)同樣大小的木球,其中白、黃、紅三種顏色球各有10個(gè),另外還有3個(gè)藍(lán)色球、2個(gè)綠色球,試問(wèn)一次至少取出多少個(gè)球,才能保證取出的球中至少有4個(gè)是同一顏色的球?【分析】從最“不利”的取出情況入手。最不利的情況是首先取出的5個(gè)球中,有3個(gè)是藍(lán)色球、2個(gè)綠色球。接下來(lái),把白、黃、紅三色看作三個(gè)抽屜,由于這三種顏色球相等均超過(guò)4個(gè),所以,根據(jù)抽屜原理2,只要取出的球數(shù)多于(4-1)×3=9個(gè),即至少應(yīng)取出10個(gè)球,就可以保證取出的球至少有4個(gè)是同一抽屜(同一顏色)里的球。故總共至少應(yīng)取出10+5=15個(gè)球。思考:把題中要求改為4個(gè)不同色,或者是兩兩同色,情形又如何?(答案分別為31和33)當(dāng)我們遇到“判別具有某種事物的性質(zhì)有沒(méi)有,至少有幾個(gè)”這樣的問(wèn)題時(shí),想到它——抽屜原理,這是你的一條“決勝”之路。提示語(yǔ)抽屜原理還可以反過(guò)來(lái)理解:假如把n+1個(gè)蘋果放到n個(gè)抽屜里,放2個(gè)或2個(gè)以上蘋果的抽屜一個(gè)也沒(méi)有(與“必有一個(gè)抽屜放2個(gè)或2個(gè)以上的蘋果”相反),那么,每個(gè)抽屜最多只放1個(gè)蘋果,n個(gè)抽屜最多有n個(gè)蘋果,與“n+1個(gè)蘋果”的條件矛盾。運(yùn)用抽屜原理的關(guān)鍵是“制造抽屜”。通常,可采用把n個(gè)“蘋果”進(jìn)行合理分類的方法來(lái)制造抽屜。比如,若干個(gè)同學(xué)可按出生的月份不同分為12類,自然數(shù)可按被3除所得余數(shù)分為3類排列組合問(wèn)題例1:某人到食堂去買飯,主食有三種,副食有五種,他主食和副食各買一種,共有多少種不同的買法?分析:某人買飯要分兩步完成,即先買一種主食,再買一種副食。其中,買主食有3種不同的方法,買副食有5種不同的方法。故可以由乘法原理解決:解:由乘法原理,主食和副食各買一種共有3×5=15種不同的方法。例2:書(shū)架上有6本不同的外語(yǔ)書(shū),4本不同語(yǔ)文書(shū),從中任取外語(yǔ)、語(yǔ)文書(shū)各一本,有多少本不同的取法?分析:要做的事情是從外語(yǔ)、語(yǔ)文書(shū)中各取一本。完成它要分兩步:即先取一本外語(yǔ)書(shū)(有6種取法),再取一本語(yǔ)文書(shū)(有4種取法)。所以,用乘法原理解決。解:從架上各取一本共有6×4=24種不同的取法。例3:由數(shù)字0、1、2、3組成的三位數(shù),問(wèn):(1)、可組成多少個(gè)不相等的三位數(shù)?(2)、可組成多少個(gè)沒(méi)有重復(fù)數(shù)字的三位數(shù)?分析:在確定由0、1、2、3組成的三位數(shù)的過(guò)程中,應(yīng)該一位一位地去確定。所以,每個(gè)問(wèn)題都可以看成是分三個(gè)步驟來(lái)完成。(1):要求組成不相等的三位數(shù)。所以,數(shù)字可以重復(fù)使用,百位上,不能取0,故有3種不同的取法;十位上,可以在四個(gè)數(shù)字中任取一個(gè),有4種不同的取法;個(gè)位上,也有4種不同的取法,由乘法原理,共可組成3×4×4=48個(gè)不相等的三位數(shù)。(2):要求組成的三位數(shù)中沒(méi)有重復(fù)數(shù)字,百位上,不能取0,有3種不同的取法;十位上,由于百位上已在1、2、3中取走一個(gè),故只剩下0和其它兩個(gè)數(shù)字,故有3種取法;個(gè)位上,由于百位和十位已各取走一個(gè)數(shù)字,故只能在剩下的兩個(gè)數(shù)字中取,有2種取法,由乘法原理,共有3×3×2=18個(gè)沒(méi)有重復(fù)數(shù)字的三位數(shù)。例4:現(xiàn)有一角的人民幣4張,貳角的人民幣2張,壹元的人民幣3張,如果從中至少取一張,至多取9張,那么,共可以配成多少種不同的錢數(shù)?分析:要從三種面值的人民幣中任取幾張,構(gòu)成一個(gè)錢數(shù),需一步一步地來(lái)做。如先取一解的,再取貳角的,最后取壹元的。但注意到,取2張一角的人民幣和取1張貳角的人民幣,得到的錢數(shù)是相同的。這就會(huì)產(chǎn)生重復(fù),如何解決這一問(wèn)題呢?我們可以把壹角的人民幣4張和貳角的人民幣2張統(tǒng)一起來(lái)考慮。即從中取出幾張組成一種面值,看共可以組成多少種。分析得知,共可以組成從壹角到捌角間的任何一種面值,共8種情況。整個(gè)問(wèn)題就變成了從8張壹角的人民幣和3張壹元的人民幣中分別取錢。這樣,第一步,從8張壹角的人民幣中取,共9種取法,即0、1、2、3、4、5、6、7、8;第二步,從3張壹元的人民幣中取共4種取法,即0、1、2、3.由乘法原理,共有9×4=36種情形,但注意到,要求”至少取一張”而現(xiàn)在包含了一張都不取的這一種情形,應(yīng)減掉。所以有35種不同的情形。例5:學(xué)校組織讀書(shū)活動(dòng),要求每個(gè)同學(xué)讀一本書(shū)。小明到圖書(shū)館借書(shū)時(shí),圖書(shū)館有不同的外語(yǔ)書(shū)150本,不同的科技書(shū)200本,不同的小說(shuō)100本。那么,小明借一本書(shū)可以有多少種不同的選法?分析:在這個(gè)問(wèn)題中,小明選一本書(shū)有三類方法。即要么選外語(yǔ)書(shū),要么選科技書(shū),要么選小說(shuō)。所以,是就用加法原理的問(wèn)題。解:小明借一本書(shū)共有:150+200+100=450(種)不同的選法。例6:一個(gè)口袋內(nèi)裝有3個(gè)小球,另一個(gè)口袋內(nèi)裝有8個(gè)小球,所有這些小球顏色各不相同。問(wèn):(1)、從兩個(gè)口袋內(nèi)任取一個(gè)小球,有多少種不同的取法?(2)、從兩個(gè)口袋內(nèi)各取一個(gè)小球,有多少種不同的取法?分析:(1)、從兩個(gè)口袋中只需取一個(gè)小球,則這個(gè)小球要么從第一個(gè)口袋中取,要么從第二個(gè)口袋中取,共有兩大類方法。所以是加法原理的問(wèn)題。(2)、要從兩個(gè)口袋中各取一個(gè)小球,則可看成先從第一個(gè)口袋中取一個(gè),再?gòu)牡诙€(gè)口袋中取一個(gè),分兩步完成,是乘法原理的問(wèn)題。解(1):3+8=11(種)(2):3×8=24(種)例7:有兩個(gè)相同的正方體,每個(gè)正方體的六個(gè)面上分別標(biāo)有數(shù)字1、2、3、4、5、6。將兩個(gè)正方體放到桌面上,向上的一面數(shù)字之和為偶數(shù)的有多少種情形?分析:要使兩個(gè)數(shù)字之和為偶數(shù),只要這兩個(gè)數(shù)字的奇偶性相同,即這兩個(gè)數(shù)字同為奇數(shù),要么同為偶數(shù),所以,要分兩大類來(lái)考慮。第一類:兩個(gè)數(shù)字同
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024牛肉供應(yīng)鏈優(yōu)化與物流配送合同
- 二零二五年鮑魚(yú)海鮮產(chǎn)品進(jìn)出口合同2篇
- 2025年度中小企業(yè)財(cái)務(wù)輔導(dǎo)與融資對(duì)接服務(wù)合同3篇
- 2025年工藝品FOB出口合同標(biāo)準(zhǔn)范本2篇
- 2024年相機(jī)設(shè)備采購(gòu)正式協(xié)議樣本
- 2024特定事項(xiàng)補(bǔ)充協(xié)議范本版B版
- 2025年度淋浴房安全檢測(cè)與安裝服務(wù)合同4篇
- 2025年環(huán)保型小區(qū)車棚租賃與充電樁建設(shè)合同3篇
- 2025年度綠色生態(tài)園林景觀項(xiàng)目苗木采購(gòu)合同樣本3篇
- 2025年度消防設(shè)施設(shè)備安全性能評(píng)估合同3篇
- 軟件項(xiàng)目應(yīng)急措施及方案
- 2025河北邯鄲經(jīng)開(kāi)國(guó)控資產(chǎn)運(yùn)營(yíng)管理限公司招聘專業(yè)技術(shù)人才5名高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年民法典知識(shí)競(jìng)賽考試題庫(kù)及答案(共50題)
- 2025老年公寓合同管理制度
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級(jí)上冊(cè) 期末綜合卷(含答案)
- 2024中國(guó)汽車后市場(chǎng)年度發(fā)展報(bào)告
- 鈑金設(shè)備操作培訓(xùn)
- 感染性腹瀉的護(hù)理查房
- 天津市部分區(qū)2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 水利工程招標(biāo)文件樣本
- 第17課 西晉的短暫統(tǒng)一和北方各族的內(nèi)遷(說(shuō)課稿)-2024-2025學(xué)年七年級(jí)歷史上冊(cè)素養(yǎng)提升說(shuō)課稿(統(tǒng)編版2024)
評(píng)論
0/150
提交評(píng)論