陜西省、青海省、四川省名校聯(lián)盟2023-2024學(xué)年高三10月第二次月考練習(xí)卷數(shù)學(xué)(理)試題 02(含解析)_第1頁
陜西省、青海省、四川省名校聯(lián)盟2023-2024學(xué)年高三10月第二次月考練習(xí)卷數(shù)學(xué)(理)試題 02(含解析)_第2頁
陜西省、青海省、四川省名校聯(lián)盟2023-2024學(xué)年高三10月第二次月考練習(xí)卷數(shù)學(xué)(理)試題 02(含解析)_第3頁
陜西省、青海省、四川省名校聯(lián)盟2023-2024學(xué)年高三10月第二次月考練習(xí)卷數(shù)學(xué)(理)試題 02(含解析)_第4頁
陜西省、青海省、四川省名校聯(lián)盟2023-2024學(xué)年高三10月第二次月考練習(xí)卷數(shù)學(xué)(理)試題 02(含解析)_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第第頁陜西省、青海省、四川省名校聯(lián)盟2023-2024學(xué)年高三10月第二次月考練習(xí)卷數(shù)學(xué)(理)試題02(含解析)絕密★啟用并使用完畢前測試時(shí)間:年月日時(shí)分——時(shí)分

陜西省、青海省、四川省名校聯(lián)盟2023-2024學(xué)年高三第二次月考復(fù)習(xí)模擬卷(理)02

(集合與邏輯語句,函數(shù),導(dǎo)數(shù),三角函數(shù)與解三角形)

本試卷分第Ⅰ卷和第Ⅱ卷兩部分,滿分150分,考試時(shí)間120分鐘

一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

1.已知集合,,則()。

A、B、C、D、

【答案】D

【解析】∵,,則,,故選D。

2.下列函數(shù)中,定義域是且為增函數(shù)的是()。

A、B、C、D、

【答案】A

【解析】為奇函數(shù),定義域?yàn)?,且為單調(diào)遞增函數(shù),故選A。

3.已知集合,集合,則的元素個(gè)數(shù)為()。

A、B、C、D、

【答案】A

【解析】∵直線與圓相離,∴的元素個(gè)數(shù)為,故選A。

4.已知、是一元二次方程的兩個(gè)不同的實(shí)根,則“且”是“且”的

()。

A、充分不必要條件B、必要不充分條件C、充分必要條件D、既不充分也不必要條件

【答案】A

【解析】若且,則,

但是,時(shí),滿足但不滿足,,

∴“且”是“且”的充分不必要條件,故選A。

5.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的“對稱美”。如圖所示的太極圖是由黑白兩個(gè)魚形紋組成的圓形圖案,充分體現(xiàn)了相互變化、對稱統(tǒng)一的形式美、和諧美。給出定義:能夠?qū)⒁宰鴺?biāo)原點(diǎn)為圓心的圓的周長和面積同時(shí)平分的函數(shù)稱為此圓的“優(yōu)美函數(shù)”,則下列函數(shù)中一定是“優(yōu)美函數(shù)”的為()。

A、B、

C、D、

【答案】C

【解析】根據(jù)優(yōu)美函數(shù)的定義可知,優(yōu)美函數(shù)的圖像過坐標(biāo)原點(diǎn),圖像關(guān)于坐標(biāo)原點(diǎn)對稱,是奇函數(shù),

A選項(xiàng),不是奇函數(shù),錯(cuò),

B選項(xiàng),不是奇函數(shù),錯(cuò),

C選項(xiàng),的定義域?yàn)?,且是奇函?shù),對,

D選項(xiàng),的定義域?yàn)?,∴圖像不經(jīng)過坐標(biāo)原點(diǎn),錯(cuò),

故選C。

6.若,,則()。

A、B、C、D、

【答案】A

【解析】∵,∴,∴,∴,故選A。

7.如圖所示,在地面上共線的三點(diǎn)、、處測得一個(gè)建筑物的仰角分別為、、,且,則建筑物的高度為()。

A、B、C、D、

【答案】D

【解析】設(shè)建筑物的高度為,由題圖知,,,,

在中,由余弦定理得:,

在中,由余弦定理得:,

∵,∴

解得(舍去)或(可取),即建筑物的高度為,故選D。

8.設(shè),,,則、、的大小關(guān)系為()。

A、B、C、D、

【答案】C

【解析】∵,,,∴,故選C。

9.已知函數(shù)在區(qū)間上的最小值為,則的取值范圍為()。

A、B、C、D、

【答案】D

【解析】當(dāng)時(shí),,由題意可知,即,

當(dāng)時(shí),,由題意可知,即,

∴的取值范圍為,故選D。

10.已知函數(shù)是定義域?yàn)榈呐己瘮?shù),當(dāng)時(shí),,若關(guān)于的方程

()有且僅有個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()。

A、或B、或C、或D、或

【答案】C

【解析】∵函數(shù)是定義域?yàn)榈呐己瘮?shù),當(dāng)時(shí),,

∴當(dāng)時(shí),,

作函數(shù)的圖像,

由于關(guān)于的方程,

解得或,

當(dāng)或時(shí),,當(dāng)或時(shí),,

由,則有個(gè)實(shí)根,由題意,只要有個(gè)實(shí)根,

由圖像可得當(dāng)時(shí),有個(gè)實(shí)根,當(dāng)時(shí),有個(gè)實(shí)根,

綜上可得:或,故選C。

11.已知函數(shù),其中、、,則以下判斷正確的是()。

A、函數(shù)有兩個(gè)零點(diǎn)、(),且、

B、函數(shù)有兩個(gè)零點(diǎn)、(),且、

C、函數(shù)有兩個(gè)零點(diǎn)、(),且、

D、函數(shù)只有一個(gè)零點(diǎn),且,

【答案】A

【解析】∵、,,∴,

,

∴存在,使得,且,

存在,使得,且、,

∴函數(shù)有兩個(gè)零點(diǎn)、(),且,,故選A。

12.已知函數(shù),若存在不相等的實(shí)數(shù)、,使成立,則實(shí)數(shù)的取值范圍為()。

A、B、C、D、

【答案】C

【解析】、,

當(dāng)時(shí),,是過定點(diǎn)的一次函數(shù),

當(dāng)時(shí),,是開口向上,對稱軸為的二次函數(shù),

當(dāng)時(shí),在遞減,在遞增,最小值為,

根據(jù)直線和拋物線的知識可知:存在不相等的實(shí)數(shù)、,使成立,

當(dāng)時(shí),,,

∴存在不相等的實(shí)數(shù)、,使成立,

當(dāng),即時(shí),在上遞增,在遞增,

即在上遞增,∴不存在符合題意的、,

當(dāng),即時(shí),在上遞增,在上遞減,在上遞增,

根據(jù)直線和拋物線的知識可知:存在不相等的實(shí)數(shù)、,使成立,

綜上所述,實(shí)數(shù)的取值范圍為,故選C。

二、填空題:本題共4小題,每小題6分,共20分。

13.已知函數(shù),則。

【答案】

【解析】。

14.大氣壓強(qiáng),它的單位是“帕斯卡”(,),已知大氣壓強(qiáng)()隨高度()的變化規(guī)律是,其中是海平面大氣壓強(qiáng),。當(dāng)?shù)馗呱缴弦惶幋髿鈮簭?qiáng)是海平面處大氣壓強(qiáng)的,則高山上該處的海拔為米。(答案保留整數(shù),參考數(shù)據(jù))

【答案】

【解析】由題意可知:,解得,∴()。

15.在中,角、、的對邊分別是、、,且滿足,則。

【答案】

【解析】∵,∴,

∴,∴,

又,,∴,又,∴。

16.若函數(shù)與函數(shù)的圖像有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)的取值范圍為。

【答案】

【解析】令,定義域?yàn)椋?/p>

與的圖像有兩個(gè)不同的公共點(diǎn)等價(jià)于在有兩個(gè)零點(diǎn),

,在內(nèi)單調(diào)遞增,令,即,

令,定義域?yàn)?,,?dāng)恒成立,

∴在單調(diào)遞增,當(dāng)時(shí),,當(dāng)時(shí),,

∴存在唯一一個(gè),使得,即,即,

當(dāng)時(shí),,在內(nèi)單調(diào)遞減,

當(dāng)時(shí),,在內(nèi)單調(diào)遞增,

∴在處取得極小值也是最小值為,

當(dāng)時(shí),,當(dāng)時(shí),,

∵在有兩個(gè)零點(diǎn),∴,即,

∵,∴,,則,

即,解得,∴實(shí)數(shù)的取值范圍為。

三、解答題:本題共6小題,共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。

17.(本小題滿分10分)已知,:,:。

(1)已知是成立的必要不充分條件,求實(shí)數(shù)的取值范圍;

(2)若是成立的充分不必要條件,求實(shí)數(shù)的取值范圍。

【解析】(1)∵是成立的必要不充分條件,∴且,

則是的真子集,則解得,

又當(dāng)時(shí),不合題意,舍去,∴實(shí)數(shù)的取值范圍為;5分

(2)∵是成立的充分不必要條件,∴是的真子集,

則,解得,又當(dāng)時(shí),兩集合相等,舍去,

∴實(shí)數(shù)的取值范圍為。10分

18.(本小題滿分12分)已知函數(shù)()在上的最大值為,把函數(shù)的圖像上的所有點(diǎn)向右平移()個(gè)單位后,得到的函數(shù)的圖像,函數(shù)的圖像關(guān)于直線對稱。

(1)求函數(shù)的解析式;

(2)在中,三個(gè)內(nèi)角、、所對的邊分別是、、,已知在軸右側(cè)的第一個(gè)零點(diǎn)為,若,求的面積的最大值。

【解析】(1)由題意可知,函數(shù)在區(qū)間上單調(diào)遞增,∴,1分

∴,,得,,經(jīng)驗(yàn)證當(dāng)時(shí)滿足題意,故,3分

∴,故,,4分

∴,,又,∴,故;6分

(2)由題意知,,∴,,∴,8分

又得,∴,∴,10分

∴,∴的面積的最大值為。12分

19.(本小題滿分12分)已知函數(shù)(是常數(shù))。

(1)若當(dāng)時(shí),恒有成立,求實(shí)數(shù)的取值范圍;

(2)若存在時(shí),使得成立,求實(shí)數(shù)的取值范圍;

(3)若方程在上有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍。

【解析】(1)令,則,當(dāng)時(shí),2分

的對稱軸為,時(shí)的最大值為,則實(shí)數(shù)的取值范圍是;4分

(2)若存在時(shí),恒有成立,則存在時(shí),使得成立,6分

于是只需時(shí)的最小值為,即,則實(shí)數(shù)的取值范圍是;8分

(3)若方程在上有唯一實(shí)數(shù)解,則在上有唯一實(shí)數(shù)解,9分

∵,故在上不可能有兩個(gè)相等的實(shí)數(shù)解,

令,∵,故只需,解得,11分

∴實(shí)數(shù)的取值范圍是。12分

20.(本小題滿分12分)在中,角、、所對的邊分別為、、,且。

(1)證明:;

(2)求角的最大值。

【答案】(1)證明:在中,,

由題意得:,

即,∴,2分

由余弦定理得,化簡得,4分

又,∴一定為鈍角,∴、一定為銳角,

∴,

∴;6分

(2)解:由(1)得,8分

∵,∴,∴,

當(dāng)且僅當(dāng),即時(shí)等號成立,11分

此時(shí)取得最大值,又,∴角的最大值為。12分

21.(本小題滿分12分)設(shè)。

(1)證明;

(2)若,證明:。

【解析】(1)設(shè),,則,1分

令,,則恒成立,則在上單調(diào)遞增,2分

于是有,,則在上單調(diào)遞增,3分

則當(dāng)時(shí),即在上恒成立;4分

(2)由(1)知,則,5分

下面證明,令,則對于而言單調(diào)遞增,6分

∴需證明,即,7分

設(shè),則,,,8分

在上單調(diào)遞增,9分

則在上單調(diào)遞增,10分

∴,即,即,11分

綜上。12分

22.(本小題滿分12分)已知函數(shù),函數(shù)。

(1)試比較與的大??;

(2)若方程有三個(gè)實(shí)根,求實(shí)數(shù)的取值范圍。

【解析】(1)令,定義域?yàn)椋?/p>

∴,1分

∴函數(shù)在上單調(diào)遞減,又,2分

∴當(dāng)時(shí),,也即,

當(dāng)時(shí),,也即,

當(dāng)時(shí),,也即,

綜上可知:當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),;4分

(2)設(shè),定義域?yàn)?,?/p>

∵,∴函數(shù)有一個(gè)零點(diǎn)為,5分

當(dāng)時(shí),恒成立,∴在上單調(diào)遞增,不滿足題意,6分

∴,,設(shè),,

若,則恒成立,∴恒成立,∴單調(diào),不合題意,7分

∴,即,解得,下面證明當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn),

設(shè)的兩個(gè)零點(diǎn)分別為、,則、,∴、,

不妨設(shè),則、,8分

∴當(dāng)時(shí),,單調(diào)遞減,

當(dāng)時(shí),,單調(diào)遞增,

當(dāng)時(shí),,單調(diào)遞減,

∵,且,∴,,9分

由(1)可知,當(dāng)時(shí),

令,則,

當(dāng)時(shí),,

又,∴函數(shù)在內(nèi)存在一個(gè)零點(diǎn),

當(dāng)時(shí),,

令,則,

當(dāng)時(shí),,則,

又,∴函數(shù)在內(nèi)存在一個(gè)零點(diǎn),11分

綜上所述,當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn),即方程有三個(gè)實(shí)根。12分絕密★啟用并使用完畢前測試時(shí)間:年月日時(shí)分——時(shí)分

陜西省、青海省、四川省名校聯(lián)盟2023-2024學(xué)年高三第二次月考復(fù)習(xí)模擬卷(理)02

(集合與邏輯語句,函數(shù),導(dǎo)數(shù),三角函數(shù)與解三角形)

本試卷分第Ⅰ卷和第Ⅱ卷兩部分,滿分150分,考試時(shí)間120分鐘

一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

1.已知集合,,則()。

A、B、C、D、

2.下列函數(shù)中,定義域是且為增函數(shù)的是()。

A、B、C、D、

3.已知集合,集合,則的元素個(gè)數(shù)為()。

A、B、C、D、

4.已知、是一元二次方程的兩個(gè)不同的實(shí)根,則“且”是“且”的

()。

A、充分不必要條件B、必要不充分條件C、充分必要條件D、既不充分也不必要條件

5.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的“對稱美”。如圖所示的太極圖是由黑白兩個(gè)魚形紋組成的圓形圖案,充分體現(xiàn)了相互變化、對稱統(tǒng)一的形式美、和諧美。給出定義:能夠?qū)⒁宰鴺?biāo)原點(diǎn)為圓心的圓的周長和面積同時(shí)平分的函數(shù)稱為此圓的“優(yōu)美函數(shù)”,則下列函數(shù)中一定是“優(yōu)美函數(shù)”的為()。

A、

B、

C、

D、

6.若,,則()。

A、B、C、D、

7.如圖所示,在地面上共線的三點(diǎn)、、處測得一個(gè)建筑物的仰角分別為、、,且,則建筑物的高度為()。

A、

B、

C、

D、

8.設(shè),,,則、、的大小關(guān)系為()。

A、B、C、D、

9.已知函數(shù)在區(qū)間上的最小值為,則的取值范圍為()。

A、B、C、D、

10.已知函數(shù)是定義域?yàn)榈呐己瘮?shù),當(dāng)時(shí),,若關(guān)于的方程

()有且僅有個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()。

A、或B、或C、或D、或

11.已知函數(shù),其中、、,則以下判斷正確的是()。

A、函數(shù)有兩個(gè)零點(diǎn)、(),且、

B、函數(shù)有兩個(gè)零點(diǎn)、(),且、

C、函數(shù)有兩個(gè)零點(diǎn)、(),且、

D、函數(shù)只有一個(gè)零點(diǎn),且,

12.已知函數(shù),若存在不相等的實(shí)數(shù)、,使成立,則實(shí)數(shù)的取值范圍為()。

A、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論