2024屆江蘇省蘇州市蘇州市星港中學(xué)數(shù)學(xué)九上期末監(jiān)測模擬試題含解析_第1頁
2024屆江蘇省蘇州市蘇州市星港中學(xué)數(shù)學(xué)九上期末監(jiān)測模擬試題含解析_第2頁
2024屆江蘇省蘇州市蘇州市星港中學(xué)數(shù)學(xué)九上期末監(jiān)測模擬試題含解析_第3頁
2024屆江蘇省蘇州市蘇州市星港中學(xué)數(shù)學(xué)九上期末監(jiān)測模擬試題含解析_第4頁
2024屆江蘇省蘇州市蘇州市星港中學(xué)數(shù)學(xué)九上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省蘇州市蘇州市星港中學(xué)數(shù)學(xué)九上期末監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.將拋物線y=x2向左平移2個單位,再向下平移5個單位,平移后所得新拋物線的表達式為()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+52.如圖,.分別與相切于.兩點,點為上一點,連接.,若,則的度數(shù)為().A.; B.; C.; D..3.在同一坐標系中,二次函數(shù)的圖象與一次函數(shù)的圖象可能是()A. B.C. D.4.如圖,在菱形中,,是線段上一動點(點不與點重合),當(dāng)是等腰三角形時,()A.30° B.70° C.30°或60° D.40°或70°5.在一個不透明的口袋中裝有個完全相同的小球,把它們分別標號為,從中隨機摸出一個小球,其標號小于的概率為()A. B. C. D.6.若二次函數(shù)y=x2﹣2x+c的圖象與坐標軸只有兩個公共點,則c應(yīng)滿足的條件是()A.c=0 B.c=1 C.c=0或c=1 D.c=0或c=﹣17.如圖,在正方形中,是等邊三角形,的延長線分別交于點,連結(jié)與相交于點H.給出下列結(jié)論,①△ABE≌△DCF;②△DPH是等腰三角形;③;④,其中正確結(jié)論的個數(shù)是()A. B. C. D.8.在體檢中,12名同學(xué)的血型結(jié)果為:A型3人,B型3人,AB型4人,O型2人,若從這12名同學(xué)中隨機抽出2人,這兩人的血型均為O型的概率為()A. B. C. D.9.如圖,以(1,-4)為頂點的二次函數(shù)y=ax2+bx+c的圖象與x軸負半軸交于A點,則一元二次方程ax2+bx+c=0的正數(shù)解的范圍是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<610.將下列多項式分解因式,結(jié)果中不含因式x﹣1的是()A.x2﹣1 B.x2+2x+1 C.x2﹣2x+1 D.x(x﹣2)﹣(x﹣2)二、填空題(每小題3分,共24分)11.如圖,平面直角坐標系中,已知O(0,0),A(﹣3,4),B(3,4),將△OAB與正方形ABCD組成的圖形繞點O順時針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,測第70次旋轉(zhuǎn)結(jié)束時,點D的坐標為_____.12.已知a、b是一元二次方程x2+x﹣1=0的兩根,則a+b=_____.13.如圖,點、在上,點在軸的正半軸上,點是上第一象限內(nèi)的一點,若,則圓心的坐標為__.14.如圖所示平面直角坐標系中,點A,C分別在x軸和y軸上,點B在第一象限,BC=BA,∠ABC=90°,反比例函數(shù)y=.(x>0)的圖象經(jīng)過點B,若OB=2,則k的值為_____.15.拋物線關(guān)于x軸對稱的拋物線解析式為_______________.16.已知圓錐的側(cè)面積為16πcm2,圓錐的母線長8cm,則其底面半徑為_____cm.17.如圖,⊙O的半徑OA長為6,BA與⊙O相切于點A,交半徑OC的延長線于點B,BA長為,AH⊥OC,垂足為H,則圖中陰影部分面積為_____.(結(jié)果保留根號)18.如圖,△ABC繞點A逆時針旋轉(zhuǎn)得到△AB′C′,點C在AB'上,點C的對應(yīng)點C′在BC的延長線上,若∠BAC'=80°,則∠B=______度.三、解答題(共66分)19.(10分)如圖,AB是⊙O的直徑,弦EF⊥AB于點C,點D是AB延長線上一點,∠A=30°,∠D=30°.(1)求證:FD是⊙O的切線;(2)取BE的中點M,連接MF,若⊙O的半徑為2,求MF的長.20.(6分)某商店將進價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高售價減少銷售量的辦法增加利潤,如果這種商品每件的售價每提高0.5元,其銷售量就減少10件,問:①應(yīng)將每件售價定為多少元,才能使每天的利潤為640元?②店主想要每天獲得最大利潤,請你幫助店主確定商品售價并指出每天的最大利潤W為多少元?21.(6分)如圖,二次函數(shù)y=﹣2x2+x+m的圖象與x軸的一個交點為A(1,0),另一個交點為B,且與y軸交于點C.(1)求m的值;(2)求點B的坐標;(3)該二次函數(shù)圖象上是否有一點D(x,y)使S△ABD=S△ABC,求點D的坐標.22.(8分)甲、乙、丙、丁共四支籃球隊要進行單循環(huán)積分賽(每兩個隊間均要比賽一場),每天比賽一場,經(jīng)抽簽確定比賽場次順序.(1)甲抽到第一場出場比賽的概率為;(2)用列表法或樹狀圖計算甲、乙兩隊抽得第一場進行比賽的概率.23.(8分)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于點A(﹣1,0)、B(5,0),與y軸相交于點C(0,).(1)求該函數(shù)的表達式;(2)設(shè)E為對稱軸上一點,連接AE、CE;①當(dāng)AE+CE取得最小值時,點E的坐標為;②點P從點A出發(fā),先以1個單位長度/的速度沿線段AE到達點E,再以2個單位長度的速度沿對稱軸到達頂點D.當(dāng)點P到達頂點D所用時間最短時,求出點E的坐標.24.(8分)[問題發(fā)現(xiàn)]如圖①,在中,點是的中點,點在邊上,與相交于點,若,則_____;[拓展提高]如圖②,在等邊三角形中,點是的中點,點在邊上,直線與相交于點,若,求的值.[解決問題]如圖③,在中,,點是的中點,點在直線上,直線與直線相交于點,.請直接寫出的長.25.(10分)4月23日,為迎接“世界讀書日”,某書城開展購書有獎活動.顧客每購書滿100元獲得一次摸獎機會,規(guī)則為:一個不透明的袋子中裝有4個小球,小球上分別標有數(shù)字1,2,3,4,它們除所標數(shù)字外完全相同,搖勻后同時從中隨機摸出兩個小球,則兩球所標數(shù)字之和與獎勵的購書券金額的對應(yīng)關(guān)系如下:兩球所標數(shù)字之和34567獎勵的購書券金額(元)00306090(1)通過列表或畫樹狀圖的方法計算摸獎一次獲得90元購書券的概率;(2)書城規(guī)定:如果顧客不愿意參加摸獎,那么可以直接獲得30元的購書券.在“參加摸獎”和“直接獲得購書券”兩種方式中,你認為哪種方式對顧客更合算?請通過求平均教的方法說明理由.26.(10分)解方程:x2﹣4x﹣21=1.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】直接根據(jù)“上加下減,左加右減”的原則進行解答即可.【題目詳解】拋物線y=x2的頂點坐標為(0,0),先向左平移2個單位再向下平移1個單位后的拋物線的頂點坐標為(﹣2,﹣1),所以,平移后的拋物線的解析式為y=(x+2)2﹣1.故選A.【題目點撥】本題考查了二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答本題的關(guān)鍵.2、D【解題分析】連接.,由切線的性質(zhì)可知,由四邊形內(nèi)角和可求出的度數(shù),根據(jù)圓周角定理(一條弧所對的圓周角等于它所對的圓心角的一半)可知的度數(shù).【題目詳解】解:連接.,∵.分別與相切于.兩點,∴,,∴,∴,∴.故選:D.【題目點撥】本題主要考查了圓的切線性質(zhì)及圓周角定理,靈活應(yīng)用切線性質(zhì)及圓周角定理是解題的關(guān)鍵.3、C【分析】根據(jù)二次函數(shù)、一次函數(shù)圖像與系數(shù)的關(guān)系,對每個選項一一判斷即可.【題目詳解】A.由一次函數(shù)圖像可得:a>0,b>0;由二次函數(shù)圖像可得:a>0,b<0,故A選項不可能.B.由一次函數(shù)圖像可得:a>0,b<0;由二次函數(shù)圖像可得:a>0,b>0,故B選項不可能.C.由一次函數(shù)圖像可得:a<0,b>0;由二次函數(shù)圖像可得:a<0,b>0,故C選項可能.D.由一次函數(shù)圖像可得:a>0,b>0;由二次函數(shù)圖像可得:a<0,b<0,故D選項不可能.故選:C.【題目點撥】本題主要考查一次函數(shù)、二次函數(shù)圖像與系數(shù)的關(guān)系,根據(jù)一次函數(shù)、二次函數(shù)圖像判斷系數(shù)的正負是解題關(guān)鍵.4、C【分析】根據(jù)是等腰三角形,進行分類討論【題目詳解】是菱形,,不符合題意所以選C5、C【分析】直接利用概率公式求解即可求得答案.【題目詳解】解:∵在一個不透明的口袋中裝有5個完全相同的小球,把它們分別標號為1,2,3,4,5,

其中小于的3個,∴從中隨機摸出一個小球,其標號小于4的概率為:故選:C.【題目點撥】此題考查了概率公式的應(yīng)用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、C【分析】根據(jù)二次函數(shù)y=x2﹣2x+c的圖象與坐標軸只有兩個公共點,可知二次函數(shù)y=x2﹣2x+c的圖象與x軸只有一個公共點或者與x軸有兩個公共點,其中一個為原點兩種情況,然后分別計算出c的值即可解答本題.【題目詳解】解:∵二次函數(shù)y=x2﹣2x+c的圖象與坐標軸只有兩個公共點,∴二次函數(shù)y=x2﹣2x+c的圖象與x軸只有一個公共點或者與x軸有兩個公共點,其中一個為原點,當(dāng)二次函數(shù)y=x2﹣2x+c的圖象與x軸只有一個公共點時,(﹣2)2﹣4×1×c=0,得c=1;當(dāng)二次函數(shù)y=x2﹣2x+c的圖象與軸有兩個公共點,其中一個為原點時,則c=0,y=x2﹣2x=x(x﹣2),與x軸兩個交點,坐標分別為(0,0),(2,0);由上可得,c的值是1或0,故選:C.【題目點撥】本題考查了二次函數(shù)與坐標的交點問題,掌握解二次函數(shù)的方法是解題的關(guān)鍵.7、A【分析】①利用等邊三角形的性質(zhì)以及正方形的性質(zhì)得出∠ABE=∠DCF=30°,再直接利用全等三角形的判定方法得出答案;

②利用等邊三角形的性質(zhì)結(jié)合正方形的性質(zhì)得出∠DHP=∠BHC=75°,進而得出答案;

③利用相似三角形的判定與性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出答案;

④根據(jù)三角形面積計算公式,結(jié)合圖形得到△BPD的面積=△BCP的面積+△CDP面積-△BCD的面積,得出答案.【題目詳解】∵△BPC是等邊三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ADC=∠BCD=90°

∴∠ABE=∠DCF=30°,

在△ABE與△CDF中,,

∴△ABE≌△DCF,故①正確;∵PC=BC=DC,∠PCD=30°,

∴∠CPD=75°,

∵∠DBC=45°,∠BCF=60°,

∴∠DHP=∠BHC=18075°,

∴PD=DH,

∴△DPH是等腰三角形,故②正確;

設(shè)PF=x,PC=y,則DC=AB=PC=y,

∵∠FCD=30°,∴即,整理得:解得:,則,故③正確;如圖,過P作PM⊥CD,PN⊥BC,

設(shè)正方形ABCD的邊長是4,∵△BPC為正三角形,

∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,

∴∠PCD=30°,∴,,

S△BPD=S四邊形PBCD-S△BCD=S△PBC+S△PDC-S△BCD,∴,故④正確;故正確的有4個,

故選:A.【題目點撥】本題考查了正方形的性質(zhì)以及全等三角形的判定等知識,解答此題的關(guān)鍵是作出輔助線,利用銳角三角函數(shù)的定義表示出出FE及PC的長是解題關(guān)鍵.8、A【分析】根據(jù)題意可知,此題是不放回實驗,一共有12×11=132種情況,兩人的血型均為O型的有兩種可能性,從而可以求得相應(yīng)的概率.【題目詳解】解:由題意可得,P(A)=,故選A.【題目點撥】本題考查列表法和樹狀圖法,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的概率.9、C【解題分析】試題解析:∵二次函數(shù)y=ax2+bx+c的頂點為(1,-4),∴對稱軸為x=1,而對稱軸左側(cè)圖象與x軸交點橫坐標的取值范圍是-3<x<-2,∴右側(cè)交點橫坐標的取值范圍是4<x<1.故選C.考點:圖象法求一元二次方程的近似根.10、B【分析】原式各項分解后,即可做出判斷.【題目詳解】A、原式=(x+1)(x-1),含因式x-1,不合題意;

B、原式=(x+1)2,不含因式x-1,符合題意;

C、原式=(x-1)2,含因式x-1,不合題意;

D、原式=(x-2)(x-1),含因式x-1,不合題意,

故選:B.【題目點撥】此題考查因式分解-運用公式法,提公因式法,熟練掌握因式分解的方法是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、(3,﹣10)【分析】首先根據(jù)坐標求出正方形的邊長為6,進而得到D點坐標,然后根據(jù)每旋轉(zhuǎn)4次一個循環(huán),可知第70次旋轉(zhuǎn)結(jié)束時,相當(dāng)于△OAB與正方形ABCD組成的圖形繞點O順時針旋轉(zhuǎn)2次,每次旋轉(zhuǎn)90°,即可得出此時D點坐標.【題目詳解】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四邊形ABCD為正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一個循環(huán),第70次旋轉(zhuǎn)結(jié)束時,相當(dāng)于△OAB與正方形ABCD組成的圖形繞點O順時針旋轉(zhuǎn)2次,每次旋轉(zhuǎn)90°,此時D點與(﹣3,10)關(guān)于原點對稱,∴此時點D的坐標為(3,﹣10).故答案為:(3,﹣10).【題目點撥】本題考查坐標與圖形,根據(jù)坐標求出D點坐標,并根據(jù)旋轉(zhuǎn)特點找出規(guī)律是解題的關(guān)鍵.12、-1【分析】直接根據(jù)兩根之和的公式可得答案.【題目詳解】∵a、b是一元二次方程x2+x﹣1=0的兩根,∴a+b=﹣1,故答案為:﹣1.【題目點撥】此題考查一元二次方程根與系數(shù)的公式,熟記公式并熟練解題是關(guān)鍵.13、【分析】分別過點B,C作x軸的垂線,垂足分別為E,F(xiàn),先通過圓周角定理可得出∠BAC=90°,再證明△BEA≌△AFC,得出AE=CF=4,再根據(jù)AO=AE-OE可得出結(jié)果.【題目詳解】解:分別過點B,C作x軸的垂線,垂足分別為E,F(xiàn),∵∠D=45°,∴∠BAC=90°.∴∠BAE+∠ABE=90°,∠BAE+∠CAF=90°,∴∠ABE=∠CAF,又AB=AC,∠AEB=∠AFC=90°,∴△BEA≌△AFC(AAS),∴AE=CF,又∵B,C的坐標為、,∴OE=1,CF=4,∴OA=AE-OE=CF-OE=1.∴點A的坐標為(1,0).故答案為:(1,0).【題目點撥】本題主要考查圓周角定理,以及全等三角形的判定與性質(zhì),根據(jù)已知條件作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.14、1【分析】作BD⊥x軸于D,BE⊥y軸于E,則四邊形ODBE是矩形,利用AAS證得△ABD≌△CBE,即可證得BD=BE,然后根據(jù)勾股定理求得B的坐標,代入y=.(x>0)即可求得k的值.【題目詳解】如圖,作BD⊥x軸于D,BE⊥y軸于E,∴四邊形ODBE是矩形,∴∠DBE=90°,∵∠ABC=90°,∴∠ABD=∠CBE,在△ABD和△CBE中∴△ABD≌△CBE(AAS),∴BE=BD,∴四邊形ODBE是正方形,∵OB=2,根據(jù)勾股定理求得OD=BD=2,∴B(2,2),∵反比例函數(shù)y=(x>0)的圖象經(jīng)過點B,∴k=2×2=1,故答案為1.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標特征,三角形全等的判定和性質(zhì),求得B的坐標是解題的關(guān)鍵.15、【分析】由關(guān)于x軸對稱點的特點是:橫坐標不變,縱坐標變?yōu)橄喾磾?shù),可求出拋物線的頂點關(guān)于x軸對稱的頂點,關(guān)于x軸對稱,則開口方向與原來相反,得出二次項系數(shù),最后寫出對稱后的拋物線解析式即可.【題目詳解】解:拋物線的頂點為(3,-1),點(3,-1)關(guān)于x軸對稱的點為(3,1),又∵關(guān)于x軸對稱,則開口方向與原來相反,所以,∴拋物線關(guān)于x軸對稱的拋物線解析式為.故答案為:.【題目點撥】本題考查了二次函數(shù)的圖象與幾何變換,解題的關(guān)鍵是抓住關(guān)于x軸對稱點的特點.16、1【解題分析】圓錐的底面圓的半徑為r,利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形面積公式得到×1π×r×8=16π,解得r=1,然后解關(guān)于r的方程即可.【題目詳解】解:設(shè)圓錐的底面圓的半徑為r,根據(jù)題意得×1π×r×8=16π,解得r=1,所以圓錐的底面圓的半徑為1cm.故答案為1.【題目點撥】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.17、【分析】由已知條件易求直角三角形AOH的面積以及扇形AOC的面積,根據(jù)陰影部分的面積=扇形AOC的面積﹣直角三角形AOH的面積,計算即可.【題目詳解】∵BA與⊙O相切于點A,∴AB⊥OA,∴∠OAB=90°,∵OA=6,AB=6,∴tan∠B=,∴∠B=30°,∴∠O=60°,∴∠OAH=30°,∴OH=OA=3,∴AH=3,∴陰影部分的面積=扇形AOC的面積﹣直角三角形AOH的面積=﹣×3×3=;故答案為:.【題目點撥】此題考查圓的性質(zhì),直角三角形中30°角所對的直角邊等于斜邊的一半,扇形面積公式,三角函數(shù).18、1【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì)即可得到結(jié)論.【題目詳解】解:∵△ABC繞點A逆時針旋轉(zhuǎn)得到△AB′C′,∴∠C′AB′=∠CAB,AC′=AC,∵∠BAC'=80°,∴∠C′AB′=∠CAB=C′AB=40°,∴∠ACC′=70°,∴∠B=∠ACC′﹣∠CAB=1°,故答案為:1.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),三角形的外角的性質(zhì),正確的識別圖形是解題的關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2)MF=.【分析】(1)如圖,連接OE,OF,由垂徑定理可知,根據(jù)圓周角定理可求出∠DOF=60°,根據(jù)三角形內(nèi)角和定理可得∠OFD=90°,即可得FD為⊙O的切線;(2)如圖,連接OM,由中位線的性質(zhì)可得OM//AE,根據(jù)平行線的性質(zhì)可得∠MOB=∠A=30°,根據(jù)垂徑定理可得OM⊥BE,根據(jù)含30°角的直角三角形的性質(zhì)可求出BE的長,利用勾股定理可求出OM的長,根據(jù)三角形內(nèi)角和可得∠DOF=60°,即可求出∠MOF=90°,利用勾股定理求出MF的長即可.【題目詳解】(1)如圖,連接OE,OF,∵EF⊥AB,AB是⊙O的直徑,∴,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°,∴OF⊥FD.∴FD為⊙O的切線.(2)如圖,連接OM,MF,∵O是AB中點,M是BE中點,∴OM∥AE.∴∠MOB=∠A=30°.∵OM過圓心,M是BE中點,∴OM⊥BE.∴MB=OB=1,∴OM==,∵∠OFD=90°,∠D=30°,∴∠DOF=60°,∴∠MOF=∠DOF+∠MOB=90°,∴MF===.【題目點撥】本題考查切線的判定與性質(zhì)、垂徑定理、三角形中位線的性質(zhì)及含30°角的直角三角形的性質(zhì),熟練掌握切線的性質(zhì)是解題關(guān)鍵.20、①應(yīng)將每件售價定為12元或1元時,能使每天利潤為640元;②當(dāng)售價定為14元時,獲得最大利潤;最大利潤為720元.【分析】①根據(jù)等量關(guān)系“利潤=(售價﹣進價)×銷量”列出函數(shù)關(guān)系式.②根據(jù)①中的函數(shù)關(guān)系式求得利潤最大值.【題目詳解】①設(shè)每件售價定為x元時,才能使每天利潤為640元,(x﹣8)[200﹣20(x﹣10)]=640,解得:x1=12,x2=1.答:應(yīng)將每件售價定為12元或1元時,能使每天利潤為640元.②設(shè)利潤為y:則y=(x﹣8)[200﹣20(x﹣10)]=﹣20x2+560x﹣3200=﹣20(x﹣14)2+720,∴當(dāng)售價定為14元時,獲得最大利潤;最大利潤為720元.【題目點撥】此題主要考查了二次函數(shù)的應(yīng)用以及一元二次方程的應(yīng)用,根據(jù)已知得出二次函數(shù)的最值是中考中考查重點,同學(xué)們應(yīng)重點掌握.21、(1)1;(2)B(﹣,0);(3)D的坐標是(,1)或(,﹣1)或(,﹣1)【分析】(1)把點A的坐標代入函數(shù)解析式,利用方程來求m的值;(2)令y=0,則通過解方程來求點B的橫坐標;(3)利用三角形的面積公式進行解答.【題目詳解】解:(1)把A(1,0)代入y=﹣2x2+x+m,得﹣2×12+1+m=0,解得m=1;(2)由(1)知,拋物線的解析式為y=﹣2x2+x+1.令y=0,則﹣2x2+x+1=0,故x==,解得x1=﹣,x2=1.故該拋物線與x軸的交點是(﹣,0)和(1,0).∵點為A(1,0),∴另一個交點為B是(﹣,0);(3)∵拋物線解析式為y=﹣2x2+x+1,∴C(0,1),∴OC=1.∵S△ABD=S△ABC,∴點D與點C的縱坐標的絕對值相等,∴當(dāng)y=1時,﹣2x2+x+1=1,即x(﹣2x+1)=0解得x=0或x=.即(0,1)(與點C重合,舍去)和D(,1)符合題意.當(dāng)y=﹣1時,﹣2x2+x+1=﹣1,即2x2﹣x﹣2=0解得x=.即點(,﹣1)和(,﹣1)符合題意.綜上所述,滿足條件的點D的坐標是(,1)或(,﹣1)或(,﹣1).【題目點撥】本題考查了拋物線的圖象和性質(zhì),解答(3)題時,注意滿足條件的點D還可以在x軸的下方是解題關(guān)鍵.22、(1);(2)【分析】(1)直接利用概率公式計算可得;(2)先畫樹狀圖列出所有等可能結(jié)果,再從中找到符合條件的結(jié)果數(shù),繼而利用概率公式求解可得.【題目詳解】解答】解:(1)甲抽到第一場出場比賽的概率為,故答案為:;(2)畫樹狀圖得:∵共有12種等可能的結(jié)果,恰好選中甲、乙兩隊的有2種情況,∴甲、乙兩隊抽得第一場進行比賽的概率為.【題目點撥】本題考查了用列表法或樹狀圖計算概率的方法,概率=所求情況數(shù)與總情況數(shù)之比23、(1);(2)①(2,);②點E(2,).【分析】(1)拋物線的表達式為:y=a(x+1)(x﹣5)=a(x2﹣4x﹣5),故﹣5a=,解得:a=﹣,即可求解;(2)①點A關(guān)于函數(shù)對稱軸的對稱點為點B,連接CB交函數(shù)對稱軸于點E,則點E為所求,即可求解;②t=AE+DE,t=AE+DE=AE+EH,當(dāng)A、E、H共線時,t最小,即可求解.【題目詳解】(1)拋物線的表達式為:y=a(x+1)(x﹣5)=a(x2﹣4x﹣5),故﹣5a=,解得:a=﹣,故拋物線的表達式為:;(2)①函數(shù)的對稱軸為:x=2,點A關(guān)于函數(shù)對稱軸的對稱點為點B,連接CB交函數(shù)對稱軸于點E,則點E為所求,由點B、C的坐標得,BC的表達式為:y=﹣x+,當(dāng)x=2時,y=,故答案為:(2,);②t=AE+DE,過點D作直線DH,使∠EDH=30°,作HE⊥DH于點H,則HE=DE,t=AE+DE=AE+EH,當(dāng)A、E、H共線時,t最小,則直線A(E)H的傾斜角為:30°,直線AH的表達式為:y=(x+1)當(dāng)x=2時,y=,故點E(2,).【題目點撥】本題考查了二次函數(shù)的綜合問題,掌握二次函數(shù)的性質(zhì)以及解析式、對稱的性質(zhì)是解題的關(guān)鍵.24、[問題發(fā)現(xiàn)];[拓展提高];[解決問題]或.【分析】[問題發(fā)現(xiàn)]由,可知AD是中線,則點P是△ABC的重心,即可得到2∶

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論