廣東省珠海香洲區(qū)四校聯(lián)考2024屆數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第1頁
廣東省珠海香洲區(qū)四校聯(lián)考2024屆數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第2頁
廣東省珠海香洲區(qū)四校聯(lián)考2024屆數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第3頁
廣東省珠海香洲區(qū)四校聯(lián)考2024屆數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第4頁
廣東省珠海香洲區(qū)四校聯(lián)考2024屆數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣東省珠海香洲區(qū)四校聯(lián)考2024屆數(shù)學九上期末教學質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.二次函數(shù)y=-2(x+1)2+5的頂點坐標是()A.-1 B.5 C.(1,5) D.(-1,5)2.如圖,A、D是⊙O上的兩個點,BC是直徑,若∠D=35°,則∠OAC的度數(shù)是()A.35° B.55° C.65° D.70°3.下列事件中,為必然事件的是()A.太陽從東方升起 B.發(fā)射一枚導彈,未擊中目標C.購買一張彩票,中獎 D.隨機翻到書本某頁,頁碼恰好是奇數(shù)4.已知二次函數(shù)圖象如圖所示,對稱軸為過點且平行于軸的直線,則下列結(jié)論中正確的是()A. B. C. D.5.根據(jù)國家外匯管理局公布的數(shù)據(jù),截止年月末,我國外匯儲備規(guī)模為億美元,較年初上升億美元,升幅,數(shù)據(jù)億用科學計數(shù)法表示為()A. B. C. D.6.如果兩個相似三角形的相似比為2:3,那么這兩個三角形的面積比為()A.2:3 B.: C.4:9 D.9:47.如圖,已知直線y=x與雙曲線y=(k>0)交于A、B兩點,A點的橫坐標為3,則下列結(jié)論:①k=6;②A點與B點關于原點O中心對稱;③關于x的不等式<0的解集為x<﹣3或0<x<3;④若雙曲線y=(k>0)上有一點C的縱坐標為6,則△AOC的面積為8,其中正確結(jié)論的個數(shù)()A.4個 B.3個 C.2個 D.1個8.如圖,在△ABC中,過點A作射線AD∥BC,點D不與點A重合,且AD≠BC,連結(jié)BD交AC于點O,連結(jié)CD,設△ABO、△ADO、△CDO和△BCO的面積分別為S1、S2、SA.S1=C.S1+9.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點C順時針旋轉(zhuǎn)11°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為()A. B. C. D.410.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.11.下列四種說法:①如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等;②將1010減去它的,再減去余下的,再減去余下的,再減去余下的,……,依此類推,直到最后減去余下的,最后的結(jié)果是1;③實驗的次數(shù)越多,頻率越靠近理論概率;④對于任何實數(shù)x、y,多項式的值不小于1.其中正確的個數(shù)是()A.1 B.1 C.3 D.412.如圖,△ABC內(nèi)接于⊙O,AB=BC,∠ABC=120°,⊙O的直徑AD=6,則BD的長為()A.2 B.3 C.2 D.3二、填空題(每題4分,共24分)13.如圖,是的直徑,點、在上,連結(jié)、、、,若,,則的度數(shù)為________.14.拋物線y=2(x﹣1)2﹣5的頂點坐標是_____.15.圓心角是60°且半徑為2的扇形面積是______16.如圖,在⊙O中,弦AC=2,點B是圓上一點,且∠ABC=45°,則⊙O的半徑R=.17.如圖,點在反比例函數(shù)的圖象上,過點作AB⊥軸,AC⊥軸,垂足分別為點,若,,則的值為____.18.圓錐側(cè)面展開圖的圓心角的度數(shù)為,母線長為5,該圓錐的底面半徑為________.三、解答題(共78分)19.(8分)已知二次函數(shù)與軸交于、(在的左側(cè))與軸交于點,連接、.(1)如圖1,點是直線上方拋物線上一點,當面積最大時,點分別為軸上的動點,連接、、,求的周長最小值;(2)如圖2,點關于軸的對稱點為點,將拋物線沿射線的方向平移得到新的拋物線,使得交軸于點(在的左側(cè)).將繞點順時針旋轉(zhuǎn)至.拋物線的對稱軸上有—動點,坐標系內(nèi)是否存在一點,使得以、、、為頂點的四邊形是菱形,若存在,請直接寫出點的坐標;若不存在,請說明理由.20.(8分)已知關于x的一元二次方程x2﹣4x+3m﹣2=0有兩個不相等的實數(shù)根.(1)求m的取值范圍;(2)當m為正整數(shù)時,求方程的根.21.(8分)如圖,函數(shù)y=2x和y=﹣x+4的圖象相交于點A,(1)求點A的坐標;(2)根據(jù)圖象,直接寫出不等式2x≥﹣x+4的解集.22.(10分)社區(qū)利用一塊矩形空地建了一個小型的惠民停車場,其布局如圖所示.已知停車場的長為52米,寬為28米,陰影部分設計為停車位,要鋪花磚,其余部分是等寬的通道.已知鋪花磚的面積為640平方米.(1)求通道的寬是多少米?(2)該停車場共有車位64個,據(jù)調(diào)查分析,當每個車位的月租金為200元時,可全部租出;當每個車位的月租金每上漲10元,就會少租出1個車位.當每個車位的月租金上漲多少元時,停車場的月租金收入為14400元?23.(10分)在直角坐標平面內(nèi),某二次函數(shù)圖象的頂點為,且經(jīng)過點.(1)求該二次函數(shù)的解析式;(2)求直線y=-x-1與該二次函數(shù)圖象的交點坐標.24.(10分)今年某市為創(chuàng)評“全國文明城市”稱號,周末團市委組織志愿者進行宣傳活動.班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽的方式確定2名女生去參加.抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機抽取第二張,記下姓名.(1)該班男生“小剛被抽中”是事件,“小悅被抽中”是事件(填“不可能”或“必然”或“隨機”);第一次抽取卡片“小悅被抽中”的概率為;(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出“小惠被抽中”的概率.25.(12分)如圖,在△ABC中,∠C=60°,AB=4.以AB為直徑畫⊙O,交邊AC于點D.AD的長為,求證:BC是⊙O的切線.26.已知拋物線經(jīng)過點,,與軸交于點.(1)求這條拋物線的解析式;(2)如圖,點是第三象限內(nèi)拋物線上的一個動點,求四邊形面積的最大值.

參考答案一、選擇題(每題4分,共48分)1、D【解題分析】直接利用頂點式的特點寫出頂點坐標.【題目詳解】因為y=2(x+1)2-5是拋物線的頂點式,根據(jù)頂點式的坐標特點可知,頂點坐標為(-1,5).故選:D.【題目點撥】主要考查了求拋物線的頂點坐標的方法,熟練掌握頂點式的特點是解題的關鍵.2、B【解題分析】解:∵∠D=35°,∴∠AOC=2∠D=70°,∴∠OAC=(180°-∠AOC)÷2=110°÷2=55°.故選B.3、A【分析】根據(jù)必然事件以及隨機事件的定義對各選項進行逐一分析即可.【題目詳解】A、太陽從東方升起是必然事件,故本選項正確;B、發(fā)射一枚導彈,未擊中目標是隨機事件,故本選項錯誤;C、購買一張彩票,中獎是隨機事件,故本選項錯誤;D、隨機翻到書本某頁,頁碼恰好是奇數(shù)是隨機事件,故本選項錯誤.故選:A.【題目點撥】本題考查了必然事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.4、D【分析】由拋物線開口向上,與y軸交于負半軸,對稱軸在y軸左側(cè)即可判斷a、c、b的符號,進而可判斷A項;拋物線的對稱軸為直線x=﹣,結(jié)合拋物線的對稱軸公式即可判斷B項;由圖象可知;當x=1時,a+b+c<0,再結(jié)合B項的結(jié)論即可判斷C項;由(1,0)與(﹣2,0)關于拋物線的對稱軸對稱,可知當x=-2時,y<0,進而可判斷D項.【題目詳解】解:A、∵拋物線開口向上,與y軸交于負半軸,對稱軸在y軸左側(cè),∴a>0,c<0,<0,∴b>0,∴abc<0,所以本選項錯誤;B、∵拋物線的對稱軸為直線x=﹣,∴,∴a﹣b=0,所以本選項錯誤;C、∵當x=1時,a+b+c<0,且a=b,∴,所以本選項錯誤;D、∵(1,0)與(﹣2,0)關于拋物線的對稱軸對稱,且當x=1時,y<0,∴當x=-2時,y<0,即4a﹣2b+c<0,∴,所以本選項正確.故選:D.【題目點撥】本題考查了二次函數(shù)的圖象與性質(zhì),屬于??碱}型,熟練掌握拋物線的性質(zhì)是解題關鍵.5、B【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】億=3.0924×1012,

故選:B.【題目點撥】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.6、C【分析】根據(jù)相似三角形的面積的比等于相似比的平方解答.【題目詳解】∵兩個相似三角形的相似比為2:3,∴這兩個三角形的面積比為4:9,故選:C.【題目點撥】本題考查的是相似三角形的性質(zhì),掌握相似三角形的面積的比等于相似比的平方是解題的關鍵.7、A【分析】①由A點橫坐標為3,代入正比例函數(shù),可求得點A的坐標,繼而求得k值;

②根據(jù)直線和雙曲線的性質(zhì)即可判斷;

③結(jié)合圖象,即可求得關于x的不等式<0的解集;

④過點C作CD⊥x軸于點D,過點A作AE⊥軸于點E,可得S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC,由點C的縱坐標為6,可求得點C的坐標,繼而求得答案.【題目詳解】①∵直線y=x與雙曲線y=(k>0)交于A、B兩點,A點的橫坐標為3,∴點A的縱坐標為:y=×3=2,∴點A(3,2),∴k=3×2=6,故①正確;②∵直線y=x與雙曲線y=(k>0)是中心對稱圖形,∴A點與B點關于原點O中心對稱,故②正確;③∵直線y=x與雙曲線y=(k>0)交于A、B兩點,∴B(﹣3,﹣2),∴關于x的不等式<0的解集為:x<﹣3或0<x<3,故③正確;④過點C作CD⊥x軸于點D,過點A作AE⊥x軸于點E,∵點C的縱坐標為6,∴把y=6代入y=得:x=1,∴點C(1,6),∴S△AOC=S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+6)×(3﹣1)=8,故④正確;故選:A.【題目點撥】此題考查了反比例函數(shù)的性質(zhì)、待定系數(shù)法求函數(shù)的解析式以及一次函數(shù)的性質(zhì)等知識.此題難度較大,綜合性很強,注意掌握數(shù)形結(jié)合思想的應用.8、D【解題分析】根據(jù)同底等高判斷△ABD和△ACD的面積相等,即可得到S1+S2=S3+S2,即【題目詳解】∵△ABD和△ACD同底等高,∴SS1即S△ABC和△DBC同底等高,∴S△ABC∴S故A,B,C正確,D錯誤.故選:D.【題目點撥】考查三角形的面積,掌握同底等高的三角形面積相等是解題的關鍵.9、A【解題分析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉(zhuǎn)角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點:1.旋轉(zhuǎn);2.勾股定理.10、C【分析】根據(jù)軸對稱,中心對稱的概念逐一判斷即可.【題目詳解】解:A、該圖形為軸對稱圖形,但不是中心對稱圖形,故A錯誤;B、該圖形為中心對稱圖形,但不是軸對稱圖形,故B錯誤;C、該圖形既是軸對稱圖形,又是中心對稱圖形,故C正確;D、該圖形為軸對稱圖形,但不是中心對稱圖形,故D錯誤;故答案為C.【題目點撥】本題考查了軸對稱,中心對稱圖形的識別,掌握軸對稱,中心對稱的概念是解題的關鍵.11、C【分析】畫圖可判斷①;將②轉(zhuǎn)化為算式的形式,求解判斷;③是用頻率估計概率的考查;④中配成平方的形式分析可得.【題目詳解】如下圖,∠1=∠1,∠1+∠3=180°,即兩邊都平行的角,可能相等,也可能互補,①錯誤;②可用算式表示為:,正確;實驗次數(shù)越多,則頻率越接近概率,③正確;∵≥0,≥0∴≥1,④正確故選:C【題目點撥】本題考查平行的性質(zhì)、有理數(shù)的計算、頻率與概率的關系、利用配方法求最值問題,注意②中,我們要將題干文字轉(zhuǎn)化為算式分析.12、D【分析】連接OB,如圖,利用弧、弦和圓心角的關系得到,則利用垂徑定理得到OB⊥AC,所以∠ABO=∠ABC=60°,則∠OAB=60°,再根據(jù)圓周角定理得到∠ABD=90°,然后利用含30度的直角三角形三邊的關系計算BD的長.【題目詳解】連接OB,如圖:

∵AB=BC,

∴,

∴OB⊥AC,

∴OB平分∠ABC,

∴∠ABO=∠ABC=×120°=60°,

∵OA=OB,

∴∠OAB=60°,

∵AD為直徑,

∴∠ABD=90°,

在Rt△ABD中,AB=AD=3,

∴BD=.故選D.【題目點撥】考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了垂徑定理和圓周角定理.二、填空題(每題4分,共24分)13、°【分析】先由直徑所對的圓周角為90°,可得:∠ADB=90°,根據(jù)同圓或等圓中,弦相等得到弧相等得到圓周角相等,得到∠A的度數(shù),根據(jù)直角三角形的性質(zhì)得到∠ABD的度數(shù),即可得出結(jié)論.【題目詳解】∵AB是⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.∵BD=CD,∴弧BD=弧CD,∴∠A=∠DBC=20°,∴∠ABD=90°-20°=70°,∴∠ABC=∠ABD-∠DBC=70°-20°=50°.故答案為:50°.【題目點撥】本題考查了圓周角定理,關鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半,直徑所對的圓周角為90°.14、(1,﹣5)【分析】根據(jù)二次函數(shù)的頂點式即可求解.【題目詳解】解:拋物線y=2(x﹣1)2﹣5的頂點坐標是(1,﹣5).故答案為(1,﹣5).【題目點撥】本題考查了頂點式對應的頂點坐標,頂點式的理解是解題的關鍵15、【解題分析】由扇形面積公式得:S=故答案是:.16、.【分析】通過∠ABC=45°,可得出∠AOC=90°,根據(jù)OA=OC就可以結(jié)合勾股定理求出AC的長了.【題目詳解】∵∠ABC=45°,∴∠AOC=90°,∴OA1+OC1=AC1.∴OA1+OA1=(1)1.∴OA=.故⊙O的半徑為.故答案為:.17、【分析】求出點A坐標,即可求出k的值.【題目詳解】解:根據(jù)題意,設點A的坐標為(x,y),∵,,AB⊥軸,AC⊥軸,∴點A的橫坐標為:;點A的縱坐標為:;∵點A在反比例函數(shù)的圖象上,∴;故答案為:.【題目點撥】本題考查了待定系數(shù)法求反比例函數(shù)解析式,解題的關鍵是熟練掌握反比例函數(shù)圖象上點的坐標特征.18、1【分析】設該圓錐的底面半徑為r,利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和弧長公式得到,然后解關于r的方程即可.【題目詳解】設該圓錐的底面半徑為r,根據(jù)題意得,解得.故答案為1.【題目點撥】本題考查圓錐的計算,解題的關鍵是知道圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.三、解答題(共78分)19、(1);(1)存在,理由見解析;,,,,【分析】(1)利用待定系數(shù)法求出A,B,C的坐標,如圖1中,作PQ∥y軸交BC于Q,設P,則Q,構建二次函數(shù)確定點P的坐標,作P關于y軸的對稱點P1(-2,6),作P關于x軸的對稱點P1(2,-6),的周長最小,其周長等于線段的長,由此即可解決問題.(1)首先求出平移后的拋物線的解析式,確定點H,點C′的坐標,分三種情形,當OC′=C′S時,可得菱形OC′S1K1,菱形OC′S1K1.當OC′=OS時,可得菱形OC′K3S3,菱形OC′K2S2.當OC′是菱形的對角線時,分別求解即可解決問題.【題目詳解】解:(1)如圖,,過點作軸平行線,交線段于點,設,=-(m1-2)1+2,∵,∴m=2時,△PBC的面積最大,此時P(2,6)作點關于軸的對稱點,點關于軸的對稱點,連接交軸、軸分別為,此時的周長最小,其周長等于線段的長;∵,∴.(1)如圖,∵E(0,-2),平移后的拋物線經(jīng)過E,B,∴拋物線的解析式為y=-x1+bx-2,把B(8,0)代入得到b=2,∴平移后的拋物線的解析式為y=-x+2x-2=-(x-1)(x-8),令y=0,得到x=1或8,∴H(1,0),∵△CHB繞點H順時針旋轉(zhuǎn)90°至△C′HB′,∴C′(6,1),當OC′=C′S時,可得菱形OC′S1K1,菱形OC′S1K1,∵OC′=C′S==1,∴可得S1(5,1-),S1(5,1+),∵點C′向左平移一個單位,向下平移得到S1,∴點O向左平移一個單位,向下平移個單位得到K1,∴K1(-1,-),同法可得K1(-1,),當OC′=OS時,可得菱形OC′K3S3,菱形OC′K2S2,同法可得K3(11,1-),K2(11,1+),當OC′是菱形的對角線時,設S5(5,m),則有51+m1=11+(1-m)1,解得m=-5,∴S5(5,-5),∵點O向右平移5個單位,向下平移5個單位得到S5,∴C′向上平移5個單位,向左平移5個單位得到K5,∴K5(1,7),綜上所述,滿足條件的點K的坐標為(-1,-)或(-1,)或(11,1-)或(11,1+)或(1,7).【題目點撥】本題屬于二次函數(shù)綜合題,考查了二次函數(shù)的性質(zhì),平移變換,翻折變換,菱形的判定和性質(zhì),軸對稱最短問題等知識,解題的關鍵是學會利用軸對稱解決最短問題,學會用分類討論的思想思考問題.20、(2)m<2;(2)x2=2+,x2=2-.【解題分析】(2)由方程有兩個不相等的實數(shù)根知△>0,列不等式求解可得;(2)求出m的值,解方程即可解答.【題目詳解】(2)∵方程有兩個不相等的實數(shù)根,∴△=42﹣4(3m﹣2)=24﹣22m>0,解得:m<2.(2)∵m為正整數(shù),∴m=2.∴原方程為x2﹣4x+2=0解這個方程得:x2=2+,x2=2-.【題目點撥】考查了根的判別式,熟練掌握方程的根的情況與判別式的值間的關系是解題的關鍵.21、(1)A的坐標為(,3);(2)x≥.【解題分析】試題分析:(1)聯(lián)立兩直線解析式,解方程組即可得到點A的坐標;(2)根據(jù)圖形,找出點A右邊的部分的x的取值范圍即可.試題解析:(1)由,解得:,∴A的坐標為(,3);(2)由圖象,得不等式2x≥-x+4的解集為:x≥.22、(1)6;(2)40或400【分析】(1)設通道的寬x米,由圖中所示可得通道面積為2×28x+2(52-2x)x,根據(jù)鋪花磚的面積+通道面積=總面積列方程即可得答案;(2)設每個車位的月租金上漲a元,則少租出個車位,根據(jù)月租金收入為14400元列方程求出a值即可.【題目詳解】(1)設通道的寬x米,根據(jù)題意得:2×28x+2(52-2x)x+640=52×28,整理得:x2-40x+204=0,解得:x1=6,x2=34(不符合題意,舍去).答:通道的寬是6米.(2)設每個車位的月租金上漲a元,則少租出個車位,根據(jù)題意得:(200+a)(64-)=14400,整理得:a2-440a+16000=0,解得:a1=40,a2=400.答:每個車位的月租金上漲40元或400元時,停車場的月租金收入為14400元.【題目點撥】本題考查一元二次方程的實際應用,讀懂題意,找出題中的等量關系列出方程是解題關鍵.23、(1);(2)兩個函數(shù)圖象的交點坐標是和.【分析】(1)根據(jù)題意可設該二次函數(shù)的解析式為,把點代入函數(shù)解析式,求出a值,進而得出該二次函數(shù)的解析式;(2)由題意直線y=-x-1與該二次函數(shù)圖象有交點得,進行求解進而分析即可.【題目詳解】解:(1)依題意可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論