蟻群算法(ACO)簡要介紹_第1頁
蟻群算法(ACO)簡要介紹_第2頁
蟻群算法(ACO)簡要介紹_第3頁
蟻群算法(ACO)簡要介紹_第4頁
蟻群算法(ACO)簡要介紹_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

李杰林蟻群算法(ACO)介紹 20世紀90年代意大利學(xué)者M.Dorigo,V.Maniezzo,A.Colorni等從生物進化的機制中受到啟發(fā),通過模擬自然界螞蟻搜索路徑的行為,提出來一種新型的模擬進化算法——蟻群算法,是群智能理論研究領(lǐng)域的一種主要算法。用該方法求解TSP問題、分配問題、job-shop調(diào)度問題,取得了較好的試驗結(jié)果。雖然研究時間不長,但是現(xiàn)在的研究顯示出,蟻群算法在求解復(fù)雜優(yōu)化問題(特別是離散優(yōu)化問題)方面有一定優(yōu)勢,表明它是一種有發(fā)展前景的算法。ACO算法起源

蟻群算法是對自然界螞蟻的尋徑方式進行模似而得出的一種仿生算法。螞蟻在運動過程中,能夠在它所經(jīng)過的路徑上留下一種稱之為外激素(pheromone)的物質(zhì)進行信息傳遞,而且螞蟻在運動過程中能夠感知這種物質(zhì),并以此指導(dǎo)自己的運動方向,因此由大量螞蟻組成的蟻群集體行為便表現(xiàn)出一種信息正反饋現(xiàn)象:某一路徑上走過的螞蟻越多,則后來者選擇該路徑的概率就越大。算法原理算法原理

基于以上蟻群尋找食物時的最優(yōu)路徑選擇問題,可以構(gòu)造人工蟻群,來解決最優(yōu)化問題。

人工蟻群中把具有簡單功能的工作單元看作螞蟻。二者的相似之處在于都是優(yōu)先選擇信息素濃度大的路徑。較短路徑的信息素濃度高,所以能夠最終被所有螞蟻選擇,也就是最終的優(yōu)化結(jié)果。

兩者的區(qū)別在于人工蟻群有一定的記憶能力,能夠記憶已經(jīng)訪問過的節(jié)點。同時,人工蟻群再選擇下一條路徑的時候是按一定算法規(guī)律有意識地尋找最短路徑,而不是盲目的。例如在TSP問題中,可以預(yù)先知道當(dāng)前城市到下一個目的地的距離。算法原理自然蟻群人工蟻群蟻群一組有效解(種群規(guī)模N)覓食空間問題的搜索空間(維數(shù)D)信息素信息素濃度變量蟻巢到食物的路徑一個有效解最短路程問題最優(yōu)解算法原理TSP問題表示為一個N個城市的有向圖G=(N,A),其中 城市之間距離目標(biāo)函數(shù)為,其中為城市1,2,…n的一個排列,算法示例螞蟻k(k=1,2,…,m)根據(jù)各個城市間連接路徑上的信息素濃度決定其下一個訪問城市,設(shè)表示

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論