




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Team#15263 Page
PAGE
0
of
NUMPAGES
23
Leaves_Classification_and_Leaf_Mass_Estimation
MACROBUTTONMTEditEquationSection2EquationChapter6Section1
SEQMTEqn\r\h
SEQMTSec\r1\h
SEQMTChap\r6\h
LeavesClassificationandLeafMassEstimation
Summary
Forthefirstproblem,weestablishourneuralnetworkmodeltoclassifyleavesoftreesbytakingeightcharacteristicsofleafintoconsideration.Theeightcharacteristicsconsistofsawtoothnumber,petiolelength,bladelength,bladewidth,bladethickness,leafareaandcirculardegree.Ourresultsaresummarizedinaconclusionthatweclassifyleavesintofourteentypesincludinglinear,lanceolate,oblanceolate,spatulate,ovat,obovate,elliptic,oblong,deltoid,reniform,orbicular,peltate,perfoliateandconnate.Ourneuralnetworkimplementtheclassificationtaskreliablyandcorrectly.
Forthesecondproblem,wesetupourAHPmodeltofigureoutthereasonswhyleaveshavethevariousshapesandcometoaconclusionthatgene,auxin,climateanddiseasearethemainreasonswhichleadtovariousshapes.
Forthethirdproblem,wediscussthisissuefromtheperspectiveofgrowthevolutionaryandhormones,buildcellsmechanicmodeltosolvethisproblemandsumuptheconclusionthattheshapesareinclinedtominimizeoverlappingindividualshadowsthatarecastsoastomaximizeexposure.Theshapeiseffectedbythedistributionofleaveswithinthevolumeofthetreeanditsbranches.
Forthefourthproblem,weusestatisticalanalysisknowledgetoanalysethedataamongtreeprofiles,branchingstructureandleafshapes,aftermathematicallyanalyzing,finallyfindthatleavesshapeshaveadirectrelationwiththetreeprofileandbranchingstructure,
Forthefifthproblem,weformulateourvolumetricmethodforleafmassestimationandlinearregressionmodelforseekingandcomparingthecorrelationbetweentheleafmassandtreeheight,treemassandcrownvolume.Weobtainthatcrownvolumehasthehighestcorrelationwithtreeleafmass.Sowemakeuseofthecrownvolumetoestimatetheleafmass.
Atlast,wewriteonepagesummarysheetofourkeyfindings.
Keywords:neuralnetwork,leafclassification,leafmassestimation,AHP,leafshape,volumetricmethod,linearregressionmodel
Contents
Contents
0
Ⅰ.Introduction
1
Ⅱ.SomeDefinitions
1
Ⅲ.GeneralAssumptions
1
Ⅳ.Symbols
2
Ⅴ.Problemanalysis
2
Ⅵ.Models
3
6.1Neuralnetworkmodeltoclassifytreeleaves
3
6.1.1Neuromime
3
6.1.2Multi-layerperceptronnetwork
4
6.1.3Back-propogation
5
6.1.4NN’susetoclassifyleaves
6
6.2Studyingthereasonsofthevariousshapesthatleaveshave.
6
6.2.1SetupaAHPmodeltovaluethesebasefactors
6
6.2.2Pairedcomparisonmatrixstructure
7
6.2.3Calculationoftheweightvectorandtheconsistencytest
8
6.3Optimizeleavesshapeformaximizeexposure
9
6.3.1Explainandanswerrequirment
9
6.3.2SetupaElasticmechanicsmodel
9
6.4Treeprofileandbranchingstructure’sinfluenceonleafshape.
10
6.4.1Analysisabouttheimpactoftreeprofiletoleafshape
10
6.4.2Electrictreebranchangle’simpactanalysis
13
6.5Estimationoftheleafmass
14
6.5.1Buildupavolumetricmodel
14
6.5.2Thecorrelationofleafmassvs.meancrownradius’scubic
15
6.5.3Thecorrelationbetweentheleafmassandtheheightofthetree
16
6.5.4Thedryleafmassvs.thevolumeofthetree
17
6.5.5Therelationshipbetweentheleafmassandmeancrownradius
18
Ⅶ.Conclusions
19
Ⅷ.StrengthsandWeaknessoftheModel
19
Ⅸ.FutureWork
20
Ⅹ.References
20
KeyFindings
21
Ⅰ.Introduction
Asisknowntoall,therearenottwoleavesexactlyalike.Plantleaveshavediverseandelaborateshapesandvenationpatterns.Thebeautyofthemhasattractedcuriosityofmanypeopleinvolvingbiologists,physicists,mathematician,artists,computerscientists,etc.foralongtime.Theleafstudyofforestsandofindividualtreeisimportanttounderstandresourceallocationoftrees,atmosphere—biosphereexchangeprocesses,andtheenergybudget,itwouldalsobevaluableforindividualtreegrowth.
Theaimofthisarticleistodevelopmodelsforleafshapesclassificationandtofigureoutthemainfactorswhichleadtothevariousleafshapes.Atthesametime,wefindouttheinteractionbetweentree(It’sprofile/branchingstructure)andtreeleaf.Thoughtherearesomanymethodstoestimatetheleafmass.Wesolvethisproblemthroughacorrelationbetweentheleafmassandthesizecharacteristicsofthetree.
Ⅱ.SomeDefinitions
Leaf
Toaplant,leavesarefoodproducingorgans.Leaves"absorb"someoftheenergyinthesunlightthatstrikestheirsurfacesandalsotakeincarbondioxidefromthesurroundingairinordertorunthemetabolicprocessofphotosynthesis.
Phototropism[1]
Phototropismisdirectionalgrowthinwhichthedirectionofgrowthisdeterminedbythedirectionofthelightsource.Itcausestheplanttohaveelongatedcellsonthefarthestsidefromthelight.Phototropismisoneofthemanyplanttropismsormovementswhichrespondtoexternalstimuli.
PolarAuxinTransport(PAT)[2]
PATistheregulatedtransportoftheplanthormoneauxininplants.Itisanactiveprocess,thehormoneistransportedincell-to-cellmannerandoneofthemainfeaturesofthetransportisitsdirectionality(polarity).Thepolarauxintransporthascoordinativefunctioninplantdevelopment,thefollowingspatialauxindistributionunderpinsmostofplantgrowthresponsestoitsenvironmentandplantgrowthanddevelopmentalchangesingeneral.
ApicalDominance[3]
Itisthephenomenonwherebythemaincentralstemoftheplantisdominantoverothersidestems;onabranchthemainstemofthebranchisfurtherdominantoveritsownsidebranch.
Ⅲ.GeneralAssumptions
Theinfluenceofvariationinthicknessofleavescanbeneglect.
Wedonottaketheinfluenceoftheartificialfactorintoconsideration.
Regardlessoftheinfluenceofdeformationofcell.
Weregardthecrownofthetreeasahalfsphere.
Theleavesinthecrownareeventlydistributed.
Neglectgenicmutationinfluence.
Ⅳ.Symbols
symbol
Instructions
climate,disease,auxin,gene
thelargesteigenvalue
eigenvectors
consistencyratio
consistencyindex
thepointaleaflocateoncoordinatesystem
acoefficientrelatedonleafshape
Treebranchangle
theleafmass
(Mark:Othersymbolswillbegiveninthespecificmodel)
Ⅴ.Problemanalysis
Thefirstquestionrequiresustobuildamathematicalmodeltodescribeandclassifyleaves.Wethinkthatthestandardofclassificationistheshapeofleaf.Soweneedtostudythecharacteristicsofleafandtoensurethathowtodefineatypeofleafbythecombinationofsomecharacteristics.Inaddition,weshouldfigureouthowandhowmuchthesecharacteristicshaveinfluenceondefiningatypeofleaf.Sowetakeeightcharacteristicsintoconsiderationincludingmastersawtoothnumber,petiolelength,bladelength,bladewidth,bladethickness,leafareaandcirculardegree.Wefindthatneuralnetworksholdthecapacitytoprocesshugedataandcanbeusedtodescribecognition,classificationandsomeotherintelligentbehaviors.Sowemakeadecisiontousetheneuralnetworkstomakeaclassificationoftreeleaves.
Thesecondquestionrequiresustofigureoutthereasonsthatwhytheleaveshavevariousshapes.Itiseasytoknowthattheshapeofaleafmainlydecidedbythegeneofthetree.Butweknowthattheleavesofthesametreealwayshavedifferentshapeswiththesamegenes.Sowecandrawaconclusionthattheshapeofleafisnotonlydecidedbythegeneofthetreeaswellasinfluencedbyenvironmentalfactors.WechoosethesefactorstoanalyzethespecificinfluenceontheformingprocessoftheshapeofleafbyusinganAHPmodel.
Thethirdquestionwantsustogetknowofthatwhethertheleafhavea“hobby”tokeepastatetomaximizeexposureandminimizeoverlappingindividualshadowsthatarecast.Inaddition,iftheshapeofleafiseffectedbythedistributionofbranchesandthevolumeofthetree.Soweshouldmakeasurveytomakeitclearthattherelationshipbetweencrown’ssurfaceareaandtheleafareaofatotaltree.Thenweneedtostudythesunshine’sinfluenceontheformationofleaf.
Wethinkthefourthquestion’saimistoresearchthatwhetherthetreeprofileorthebranchingstructurehasinfluenceonleafshape.Inthisquestionwethinkthatthe“profile”ofatreeisthecrown,andthereisapossibilitythatdifferentcrownhasdifferentinfluenceontheleafshape.
Thelastquestionisrequireustofindacorrelationbetweentheleafmassandthesizecharacteristicsofthetree(height,mass,volumedefinedbytheprofile),andthenmakeuseofoneormoreofthischaracteristicstoestimatetheleafmassofatree.
Ⅵ.Models
6.1Neuralnetworkmodeltoclassifytreeleaves
Ourdutyistofindanapproachtohowtoclassifyleaves.WeuseNeuralnetworkmodeltoclassifytreeleaves
Asforclassification,Neuralnetworkmodelisgreatlyabletogetafairlyidealconclusion.Todistinguishoneleafshapepatternsfromeachother,Neuralnetworkmodelisoptimal.Throughastudysampleprogressonandoff,inwhichweadjustaccordingly.Eventuallyourmodelisso“smart”astoidentifydifferentleafshapes.Aleafsamplecharacterize8featuresasmentioned-above.Anditisnecessaryforustoexplainthemodelandweseparateasthreepartstoexpatiate.
6.1.1Neuromime
Thefollowgraphisabasepartof.
Figure6.1-1:neuromime
Solutiontoinputsignal:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
1
)
Whereistheweight,istheinputnodevalue:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
2
)
isThresholdvalue:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
3
)
isactivationfunction,istheoutputofaneuroninthesuccessivelayer.Theactivationfunctionisanonlinearfunctionandisgivenby:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
4
)
6.1.2Multi-layerperceptronnetwork
Thisisthemainstructureof.
Figure6.1-2:Multi-layerperceptronnetwork
ThestructureoftheArtificialNeuralNetworkANNinthisworkcontainsthreelayers:input,hiddenandoutputlayersasshowninfigure6.1-2.Weuseinputlayertoinputthecharacteristicsoftheleaves.Eachlayercontainsandnodes.Thenodeisalsocalledneuronorunit.ThisstudysummarizedeightfactorsforANNinput,thatistosay.Theeightinputunitsaresawtoothnumber,petiolelength,bladelength,bladewidth,bladethickness,leafareaandcirculardegree.
Forthehiddenlayerwemake.Thefunctionoftheoutputlayeristooutputclassifiedinformationcorrespondingtotheinputdata.Thevalueofrangesfromthetypesofleavesweneedtoidentify.Theisdenotedasnumericalweightsbetweeninputandhiddenlayers,betweenhiddenandoutputlayersasalsoshowninfigure6.1-2.
Infact,asforasampleof“”,theinputofthehiddenlayeris:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
5
)
Thecorrespondingoutputstate:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
6
)
Therefore,thesuperimposedsignalreceivedis:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
7
)
Thefinaloutputofthenetworkis:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
8
)
Wehopethefinaloutputisidealization.Forexample.Forexample,afterlearningmapleleaf‘sfeatures,iftheoutputisliketheformof,wecalledtheoutputlikethistheidealoutput,theidealoutputisnotedfor.
Figure6.1-2:Differenttypesofshapes
Linear.Lanceolate.Oblanceolate.Spatulate.Ovate.Obovate.Elliptic.Oblong.Deltoid.Reniform.Orbicular.Peltate.PerfoliateConnate.
6.1.3Back-propogation
Inordertominimizingthedifferencesbetweenactualoutputanddesiredoutput,wechooseBPalgorithm,whichisonepartof.
Assetforth,theerrorobtainedwhentrainingapair(pattern)consistingofbothinputandoutputgiventotheinputlayerofthenetworkisgivenby:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
9
)
Whereisthethcomponentofthedesiredoutputvectorandisthecalculatedoutputofthneuronintheoutputlayer.
Combine
GOTOBUTTONZEqnNum106698
REFZEqnNum106698\*Charformat\!
(8)
with
GOTOBUTTONZEqnNum233133
REFZEqnNum233133\*Charformat\!
(9)
,wecandraw:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
10
)
Thisisanonlinearfunctionwhichiscontinuouslydifferentiable.Inordertoobtaintheminimumpointandthevalue,themostconvenientistousethesteepestdescentmethodtogettheminimalvalueof,when,wegettheidealvalueofthevariablesand.
6.1.4NN’susetoclassifyleaves
Through,singleseveralmodelsleavesandgroupingandnumberofthem.Then,learningeachgroup,isacquaintanceeachmodels.Ifwanttoclassifyoneleaf.Weareabletolettosolvethisproblem,eventually,weclassifytheleafaslike-model.
6.2Studyingthereasonsofthevariousshapesthatleaveshave.
Leaveshaveavarietyofforms.Therearelotsofreasonsaccountforleavesvaryinginshapesandsize,listedasfollows:Overall,thereasonscanbedividedintoexternalandinternalfactors.
Externalfactors:
Seasonsandclimate(includingwind,sunlight,moisture,temperature);
Plantdiseasesandinsectpests;
Artificialfactor;
Internalfactors:
Deformationofcells,moisturelossofMesophyllcellsmaycausevolumedecrease;
Phytohormoneauxin;
Differencegene.
webelievethatthereexits4basefactorsthatleadtothevarietyofleavesshape.Theyareclimate,disease,phytohormoneandgene.Andweendeavorfindoutreasonstothem.
climate:thechangeofsunshine,water,temperature,humiditywhichaltersleavesshape.
disease:througheffectingtheactivityofanenzyme,sothatinfluenceleavesshape.
Phytohormoneauxin:haveinfluenceongeneexpression
gene:throughDNAdeterminethegeneralleafshape
6.2.1SetupaAHPmodeltovaluethesebasefactors
Wesolvethisproblembasedonthereasonslistedabove.Afteranalyzingallofthem,weholdanopinionthathumanattemptisusuallyfairlyhaphazard.Sinceweviewalltheleaves’livingenvironmentisstable,wedon’ttakeartificialfactorintoconsideration.Wedefinite"totalimpact"as"targetlayer”,andclimate,disease,phytohormone,geneasthe"criterionlayer".Asshowninthefollowingfigure6.2-1:
Totalimpact
Climate
Disease
Auxin
Gene
Figure6.2-1:reasonsforthevariousshapes
6.2.2Pairedcomparisonmatrixstructure
Toanalyzetheeffectsofelectricvehicles’widespreaduseontheenvironment,social,economicandhealth,weeachtaketwofactors:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
11
)
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
12
)
Theyareusedtorepresentenvironmental,economic,socialandhealthbyturns.Allresultsareavailablethefollowingpairwisecomparisonmatrix:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
13
)
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
14
)
Obviously:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
15
)
Theresultweusedpairedcomparisonofthepairedcomparisonmatrixis:
Whenwetakecomparisonofthemqualitatively,therearefiveclearhierarchyinpeople'smindsusually,whichisexpressedas:
Table6.1-1:themeaningoftheMeasure1-9
Meaning
1
andhavethesameinfluence
3
hasaslightlystrongerinfluencethan
5
hasstrongerinfluencethan
7
hassignificantlystrongerinfluencethan
9
hasAbsolutelystrongerinfluencethan
2,4,6,8
heratiooftheinfluenceof
to
locatesbetweenthetwonearclasses
1,1/2,,1/9
heratioof
is
the
reciprocal
of
6.2.3Calculationoftheweightvectorandtheconsistencytest
UseMATLABsoftwaretocalculatethepairwisecomparisonmatrixforthelargesteigenvalueandthemaximumeigenvectorthattheeigenvaluecorresponding.Thenwewillnormalizationtheabove-mentionedvector,thenormalizedresultsastheweightvectorofthecomparisonfactor.Followingtheresults:
Usually,thepairscomparisonmatrixisnotthesamearray.Butifitsfeaturevectorsofeigenvaluecorrespondingcanbeusedasaweightvectoroffactorstobecompared,theextentofitsinconsistencyshouldbewithintherangeof:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
16
)
Selecting0.1inthistypehasacertainsubjectivewishes.
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
17
)
representsconsistencyindex,representsitsRandomConsistencyIndex,representsitsconsistencyratio.
Table6.1-2:
1
2
3
4
5
6
7
8
9
10
0
0
0.58
0.90
1.12
1.24
1.32
1.41
1.45
1.49
Fromtheequationabovewecandraw:
Fromthetableabove,wecanget:
Thecorrespondingis
Thismeansourmodelhaspassedtheconsistencytest,canbeusedasaweightvector.
Fromtheanalysisweelicitaconclusionthatgeneismaximallyimpacted,andthengene,phytohormone,climate,deaseisfollowing.
6.3Optimizeleavesshapeformaximizeexposure
6.3.1Explainandanswerrequirment
Fromthemodel2’sconclusionwegetabove,weacquaintthatsunlightisacriticalfactorforplants.Plantsarephotoautotrophs,obtaintheirownenergythroughphotosynthesisandproduceoxygeninthemeantime.Fromevolutionaryconsiderations,itseemsthattheleavesalwaysinafavorabledirection,sothattheycanmaximizetheirexposuretothesun.Asisconsideredabove,sunlightchangesthebladeshapethroughinfluencingthedistributionofgrowthhormones.Thuswediscussthisissuefromtheperspectiveofgrowthhormones.Firstofall,weneedtoknowmorespecificallyhowgrowthhormonesaffectleaves.Growthhormonesisadirectionaltransport,butsometimesittransportstothebacklight.Byinhibitingthegrowthoftheshadedsidetoeffectsthephototropismmovementofplants.Duetothisphenomenonleaves“dotheirbestefforts”makethemselvesexposed.Inotherwords,Itistominimizemutualshadingimpact.Wetrytobuildcellsmechanicmodeltosolvethisproblem,meanwhile,explainreasonsforthisphenomenon.
Conclusion:plantsalways“optimize”theirleavesshapeformaximizeexposure.Putanotherway,theyare“minimize”overlappingindividualshadowsthatarecast.Theresultcanprimelyexplainthereasons.
6.3.2SetupaElasticmechanicsmodel
WechooseElasticmechanicsmodeltosimplifyandimitatePhysicalforceofmesophyllcells.Weassumethateachcellofleafissubjecttotwoforces,oneistheexpansiveforcegeneratedbycytoplasmofcellsinside;anotheroneisexternaltensiongeneratedbycellwall,asshowninfigure6.3-1.
Figure6.3-1:Elasticrigidmodel
Inordertodescribethetwophysicalforcesleafcellssufferedmoreaccurately.Wecanbuildcontractivespringtopresenttheexpansiveforceofthecell,similarly,tensionspringscanbeusedtoexpressthetensionbetweenthecells.Therefore,onlythesetwoforcesbalanceeachother,acellcanstayinstablegeometrywhichcanusethefollowingequationtoexpress.
Whereiscells’originallengthinthesaturatedstate,presentsthelengthafterpowerexpansionandisexternalimpulse,representsspringstiffness.
Thismodeldescribebecauseofthephotosynthesis,cellsaffectedbygrowthhormones,leadingtoaresultthattheshapes“minimize”overlappingindividualshadowsthatarecast,soastomaximizeexposure.
Thus,aleaftendstoincreasethesurfaceareaaslargeaspossibletomaximizemetaboliccapacity,becausemetabolismproducestheenergyandmaterialsrequiredtosustainandreproducelife.
6.4Treeprofileandbranchingstructure’sinfluenceonleafshape.
Westrivetoexploretherelationshipsbetweendistributionofleaveswithinthe“volume”ofthetreeandleavesshape.
6.4.1Analysisabouttheimpactoftreeprofiletoleafshape
Weanalyzethisproblembasedonbiology.Wetaketheinfluenceofwindintoconsiderationinadditiontothosefourfactorsabove.Especiallyforthosehugetrees,spatialdistributionwouldinfluencetheleafshape,namelytheanswertothisquestionispositive.Becauseofthecomplexityofgeneticmutation,wesolvethisproblembasedonenvironmentandauxinwithoutregardtogenemutation.Weusetheimpactofwindinsteadofenvironmentalinfluence.
Auxinsarenotsynthesizedinallcells(evenifcellsretainthepotentialabilitytodoso,onlyunderspecificconditionswillauxinsynthesisbeactivatedinthem).Forthatpurpose,auxinshavetobetranslocatedtowardthosesiteswheretheyareneeded.Translocationisdriventhroughouttheplantbody,primarilyfrompeaksofshootstopeaksofroots.Polarauxintransportwouldleadtophyllotaxisdisorderandleavesofdifferentsize.(fromdevelopmentmechanismoftheleaves).Astheresult,someleaveswellbeenrichedresponsetounevendistributionoftheauxins.[8]Leavesawayfromsunmayhavebiggerleafareatogetmoresunlight.Duetotheinfluenceofwind,thedownwindleavesweresignificantlybetterthanthoseinupwinddirection.
Conclusion:leavesshapeareinfluencedbyleaves’three-dimensionaleffectatthetreeanditsbranches.
Setupmathematicfunctions
Spaceanalysisonatreeasisshowninfigure.Nowwechoosealeaflocatedintostudyits’shape.Determineleafshapethroughintegratedimpactsofauxin,sunlightandwind.Weprovideacoefficienttoindicatetheleafshape:
Figure6.4-1:Treespacecoordinatesystem
Weprovideacoefficienttoindicatetheleafshape:
Wheresisleafarea,isthelengthofleaf,isthewidthofleaf.
Findoutspacefunctionexpressionsaboutthethreefactors:
WhereNisAuxinconcentrations,isLightflux,isleafsurface,iswindforce,iswindspeedandisaconstantcoefficient,whichusedtoquantifytheinfluenceofwind
Thenwecanget:
Auxinconcentrations:
Lightflux:
Weintroduce
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
18
)
Thenwecanget:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
19
)
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
20
)
whereisweedspeed,isLuminousflux,whichusedtoquantifytheinfluenceofwind,isthecorresponingweightcoefficient.
Whethertreebranchinginfluenceleavesshape.
Firstly,webelievethatthemainfeatureoftreeprofilewouldbetreeshape.duetothesubtledifferencesoflight,temperature,humidityandvelocityofwindamongdifferenttreeshapes,sothatleafshapesarevarious.Inaword,leafshapesarerelativetotreeshapes.Thereisagraphwecanoffer.
Table6.4-1:someexplanation
:
crowntypeparameter
leafareaindex
meantiltangle
scatteredlightsitefigure
directlightsitefigure
generallightsitefigure
Table6.4-2:Thecanopycharacteristicsindexesunderdifferenttreeshape
Treeshape
LAI
ELADP
MLA
ISF
DSF
CSF
Opencebtershape
Spindleshape
Disperselaminationshape
Note:Differentlettersincolumnsofthetableshowthesignificantdifferences()
Treeswithopencebtershapehavetheadvantagesofreceivingmoresunlight.It’slowerthantheothertwo,lowerthanspindleshape,lowerthandisperselaminationshape.
haslargerlightsitecoefficientthantheothertwoshapes.Its’,andare、、largerthanandis、、largerthan.
TreeswithSpindleshapehavegrowingweakness,noapparentspacingbetweenlayersandpoorlighting.Its’LAIisthebiggestamongthethreeshapes.Its’increasingrangofISFis25%higherthan,its’andis,lowerthan.
Soitisobviouslythatleafshaperelatestotreeshape.
6.4.2Electrictreebranchangle’simpactanalysis
Inadditiontotreeprofile,treebranchanglesalsoinfluenceleafshapes.Figureshowsdifferenttreebranchangleeffectonthetreearea.
Whentwonewbranchunits(unit3andunit5)arisefromthedistalendofapreviousunit(motherunit)thereisaregularasymmetryinthebranchangles(θ1andθ2,respectively)aprevioustheoreticalmodelfortreelikebodiestodevelopareliablecomputersimulationoftreegeometryforthisspecies.Thetreelikebodiesintheoriginal,theoreticalmodelweredevelopedwithonlytwoparameters,theratioofmothertodaughterbranchunitlengthsandtheasymmetryofforking.
Figure6.4-2:Treebranchangle’simpactonleafarea.
Figure6.4-2isvariationoftheeffectiveleafareaofabranchtierdependingonthebranchangles,and.ThetiterofthefivelateralbranchcomplexesissimulatedwiththreeordersofbifurcationaccordingtotherulesofTerminalia-branching.Thedivergenceangleofthefirstbranchunitofeachbranchcomplexequals.Thesignofthebranchanglesofthefirstbranchunitineachsuccessivebranchcomplexalternate.Theratiosofbranchlengthsofunits3and5tothatoftheirmotherunitare0.94and0.87,respectively.Theradiusoftheleafdiskapproximationis0.8wherethelengthofthelongestdistalbranchunitisunity.Simulationsofthebranchtiersareprojectedonahorizontalplane.and,respectively,areasfollows:(a)and-;(b)and;(c)and;(d)and;(e)and.Maximumeffectiveleafareais(c)
Figureshowsthattheobservedbranchanglesresultinthemaximumeffectiveleafsurfacepossibleforabranchsystemthatfollowsthispatternofbranching.Inaddition,thenaturalconstraintsonbifurcationoflateralbranchesresultinagreatereffectiveleafareaperleafclusterthanwhenbranchingisunrestrained.
Conclusion:WegettheconclusionthatbranchingpatterninTerminaliaiscorrelatedwithefficientpresentationofleafsurfacetodirectsunlightratherthansimplywithmaximumtotalleafsurface.
6.5Estimationoftheleafmass
Asisknowntoall,atreeusuallyhastensofthousandsofleaveswhichwecannotaccuratelycountevenbymoderninstruments.Soit’shardtocalculatetheleafmassofatreeprecisely.Butwecantrytolookingforsomech
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南工程職業(yè)學(xué)院《重金屬冶金學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆應(yīng)用職業(yè)技術(shù)學(xué)院《外國戲劇史》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025屆河南省駐馬店市驛城區(qū)高三上學(xué)期一模歷史試卷
- 黑龍江職業(yè)學(xué)院《勞動定額學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024-2025學(xué)年浙江省部分重點高中高二上學(xué)期12月月考歷史試卷
- 九江學(xué)院《文具設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 青海師范大學(xué)《汽車電子電氣A》2023-2024學(xué)年第二學(xué)期期末試卷
- 煙臺理工學(xué)院《中國古代文學(xué)作品》2023-2024學(xué)年第二學(xué)期期末試卷
- 南陽農(nóng)業(yè)職業(yè)學(xué)院《就業(yè)與創(chuàng)業(yè)教育》2023-2024學(xué)年第二學(xué)期期末試卷
- 桂林信息工程職業(yè)學(xué)院《生物質(zhì)能源概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 血液科護士的惡性腫瘤護理
- 畜禽廢棄物資源化利用講稿課件
- 土地糾紛調(diào)解簡單協(xié)議書
- 服裝倉庫管理制度及流程
- 《餐飲渠道開發(fā)方案》課件
- 架子工安全教育培訓(xùn)試題(附答案)
- 一中師德考核評估制度
- 春節(jié)習(xí)俗中的傳統(tǒng)茶文化與茶藝
- 醫(yī)療文書病歷書寫規(guī)范培訓(xùn)教學(xué)課件
- 分布式網(wǎng)絡(luò)處理方案
- CNAS-CL02-A001:2023 醫(yī)學(xué)實驗室質(zhì)量和能力認可準(zhǔn)則的應(yīng)用要求
評論
0/150
提交評論