學(xué)士學(xué)位論文-leavesclassificationandleafmassestimation數(shù)模競賽二等獎_第1頁
學(xué)士學(xué)位論文-leavesclassificationandleafmassestimation數(shù)模競賽二等獎_第2頁
學(xué)士學(xué)位論文-leavesclassificationandleafmassestimation數(shù)模競賽二等獎_第3頁
學(xué)士學(xué)位論文-leavesclassificationandleafmassestimation數(shù)模競賽二等獎_第4頁
學(xué)士學(xué)位論文-leavesclassificationandleafmassestimation數(shù)模競賽二等獎_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Team#15263 Page

PAGE

0

of

NUMPAGES

23

Leaves_Classification_and_Leaf_Mass_Estimation

MACROBUTTONMTEditEquationSection2EquationChapter6Section1

SEQMTEqn\r\h

SEQMTSec\r1\h

SEQMTChap\r6\h

LeavesClassificationandLeafMassEstimation

Summary

Forthefirstproblem,weestablishourneuralnetworkmodeltoclassifyleavesoftreesbytakingeightcharacteristicsofleafintoconsideration.Theeightcharacteristicsconsistofsawtoothnumber,petiolelength,bladelength,bladewidth,bladethickness,leafareaandcirculardegree.Ourresultsaresummarizedinaconclusionthatweclassifyleavesintofourteentypesincludinglinear,lanceolate,oblanceolate,spatulate,ovat,obovate,elliptic,oblong,deltoid,reniform,orbicular,peltate,perfoliateandconnate.Ourneuralnetworkimplementtheclassificationtaskreliablyandcorrectly.

Forthesecondproblem,wesetupourAHPmodeltofigureoutthereasonswhyleaveshavethevariousshapesandcometoaconclusionthatgene,auxin,climateanddiseasearethemainreasonswhichleadtovariousshapes.

Forthethirdproblem,wediscussthisissuefromtheperspectiveofgrowthevolutionaryandhormones,buildcellsmechanicmodeltosolvethisproblemandsumuptheconclusionthattheshapesareinclinedtominimizeoverlappingindividualshadowsthatarecastsoastomaximizeexposure.Theshapeiseffectedbythedistributionofleaveswithinthevolumeofthetreeanditsbranches.

Forthefourthproblem,weusestatisticalanalysisknowledgetoanalysethedataamongtreeprofiles,branchingstructureandleafshapes,aftermathematicallyanalyzing,finallyfindthatleavesshapeshaveadirectrelationwiththetreeprofileandbranchingstructure,

Forthefifthproblem,weformulateourvolumetricmethodforleafmassestimationandlinearregressionmodelforseekingandcomparingthecorrelationbetweentheleafmassandtreeheight,treemassandcrownvolume.Weobtainthatcrownvolumehasthehighestcorrelationwithtreeleafmass.Sowemakeuseofthecrownvolumetoestimatetheleafmass.

Atlast,wewriteonepagesummarysheetofourkeyfindings.

Keywords:neuralnetwork,leafclassification,leafmassestimation,AHP,leafshape,volumetricmethod,linearregressionmodel

Contents

Contents

0

Ⅰ.Introduction

1

Ⅱ.SomeDefinitions

1

Ⅲ.GeneralAssumptions

1

Ⅳ.Symbols

2

Ⅴ.Problemanalysis

2

Ⅵ.Models

3

6.1Neuralnetworkmodeltoclassifytreeleaves

3

6.1.1Neuromime

3

6.1.2Multi-layerperceptronnetwork

4

6.1.3Back-propogation

5

6.1.4NN’susetoclassifyleaves

6

6.2Studyingthereasonsofthevariousshapesthatleaveshave.

6

6.2.1SetupaAHPmodeltovaluethesebasefactors

6

6.2.2Pairedcomparisonmatrixstructure

7

6.2.3Calculationoftheweightvectorandtheconsistencytest

8

6.3Optimizeleavesshapeformaximizeexposure

9

6.3.1Explainandanswerrequirment

9

6.3.2SetupaElasticmechanicsmodel

9

6.4Treeprofileandbranchingstructure’sinfluenceonleafshape.

10

6.4.1Analysisabouttheimpactoftreeprofiletoleafshape

10

6.4.2Electrictreebranchangle’simpactanalysis

13

6.5Estimationoftheleafmass

14

6.5.1Buildupavolumetricmodel

14

6.5.2Thecorrelationofleafmassvs.meancrownradius’scubic

15

6.5.3Thecorrelationbetweentheleafmassandtheheightofthetree

16

6.5.4Thedryleafmassvs.thevolumeofthetree

17

6.5.5Therelationshipbetweentheleafmassandmeancrownradius

18

Ⅶ.Conclusions

19

Ⅷ.StrengthsandWeaknessoftheModel

19

Ⅸ.FutureWork

20

Ⅹ.References

20

KeyFindings

21

Ⅰ.Introduction

Asisknowntoall,therearenottwoleavesexactlyalike.Plantleaveshavediverseandelaborateshapesandvenationpatterns.Thebeautyofthemhasattractedcuriosityofmanypeopleinvolvingbiologists,physicists,mathematician,artists,computerscientists,etc.foralongtime.Theleafstudyofforestsandofindividualtreeisimportanttounderstandresourceallocationoftrees,atmosphere—biosphereexchangeprocesses,andtheenergybudget,itwouldalsobevaluableforindividualtreegrowth.

Theaimofthisarticleistodevelopmodelsforleafshapesclassificationandtofigureoutthemainfactorswhichleadtothevariousleafshapes.Atthesametime,wefindouttheinteractionbetweentree(It’sprofile/branchingstructure)andtreeleaf.Thoughtherearesomanymethodstoestimatetheleafmass.Wesolvethisproblemthroughacorrelationbetweentheleafmassandthesizecharacteristicsofthetree.

Ⅱ.SomeDefinitions

Leaf

Toaplant,leavesarefoodproducingorgans.Leaves"absorb"someoftheenergyinthesunlightthatstrikestheirsurfacesandalsotakeincarbondioxidefromthesurroundingairinordertorunthemetabolicprocessofphotosynthesis.

Phototropism[1]

Phototropismisdirectionalgrowthinwhichthedirectionofgrowthisdeterminedbythedirectionofthelightsource.Itcausestheplanttohaveelongatedcellsonthefarthestsidefromthelight.Phototropismisoneofthemanyplanttropismsormovementswhichrespondtoexternalstimuli.

PolarAuxinTransport(PAT)[2]

PATistheregulatedtransportoftheplanthormoneauxininplants.Itisanactiveprocess,thehormoneistransportedincell-to-cellmannerandoneofthemainfeaturesofthetransportisitsdirectionality(polarity).Thepolarauxintransporthascoordinativefunctioninplantdevelopment,thefollowingspatialauxindistributionunderpinsmostofplantgrowthresponsestoitsenvironmentandplantgrowthanddevelopmentalchangesingeneral.

ApicalDominance[3]

Itisthephenomenonwherebythemaincentralstemoftheplantisdominantoverothersidestems;onabranchthemainstemofthebranchisfurtherdominantoveritsownsidebranch.

Ⅲ.GeneralAssumptions

Theinfluenceofvariationinthicknessofleavescanbeneglect.

Wedonottaketheinfluenceoftheartificialfactorintoconsideration.

Regardlessoftheinfluenceofdeformationofcell.

Weregardthecrownofthetreeasahalfsphere.

Theleavesinthecrownareeventlydistributed.

Neglectgenicmutationinfluence.

Ⅳ.Symbols

symbol

Instructions

climate,disease,auxin,gene

thelargesteigenvalue

eigenvectors

consistencyratio

consistencyindex

thepointaleaflocateoncoordinatesystem

acoefficientrelatedonleafshape

Treebranchangle

theleafmass

(Mark:Othersymbolswillbegiveninthespecificmodel)

Ⅴ.Problemanalysis

Thefirstquestionrequiresustobuildamathematicalmodeltodescribeandclassifyleaves.Wethinkthatthestandardofclassificationistheshapeofleaf.Soweneedtostudythecharacteristicsofleafandtoensurethathowtodefineatypeofleafbythecombinationofsomecharacteristics.Inaddition,weshouldfigureouthowandhowmuchthesecharacteristicshaveinfluenceondefiningatypeofleaf.Sowetakeeightcharacteristicsintoconsiderationincludingmastersawtoothnumber,petiolelength,bladelength,bladewidth,bladethickness,leafareaandcirculardegree.Wefindthatneuralnetworksholdthecapacitytoprocesshugedataandcanbeusedtodescribecognition,classificationandsomeotherintelligentbehaviors.Sowemakeadecisiontousetheneuralnetworkstomakeaclassificationoftreeleaves.

Thesecondquestionrequiresustofigureoutthereasonsthatwhytheleaveshavevariousshapes.Itiseasytoknowthattheshapeofaleafmainlydecidedbythegeneofthetree.Butweknowthattheleavesofthesametreealwayshavedifferentshapeswiththesamegenes.Sowecandrawaconclusionthattheshapeofleafisnotonlydecidedbythegeneofthetreeaswellasinfluencedbyenvironmentalfactors.WechoosethesefactorstoanalyzethespecificinfluenceontheformingprocessoftheshapeofleafbyusinganAHPmodel.

Thethirdquestionwantsustogetknowofthatwhethertheleafhavea“hobby”tokeepastatetomaximizeexposureandminimizeoverlappingindividualshadowsthatarecast.Inaddition,iftheshapeofleafiseffectedbythedistributionofbranchesandthevolumeofthetree.Soweshouldmakeasurveytomakeitclearthattherelationshipbetweencrown’ssurfaceareaandtheleafareaofatotaltree.Thenweneedtostudythesunshine’sinfluenceontheformationofleaf.

Wethinkthefourthquestion’saimistoresearchthatwhetherthetreeprofileorthebranchingstructurehasinfluenceonleafshape.Inthisquestionwethinkthatthe“profile”ofatreeisthecrown,andthereisapossibilitythatdifferentcrownhasdifferentinfluenceontheleafshape.

Thelastquestionisrequireustofindacorrelationbetweentheleafmassandthesizecharacteristicsofthetree(height,mass,volumedefinedbytheprofile),andthenmakeuseofoneormoreofthischaracteristicstoestimatetheleafmassofatree.

Ⅵ.Models

6.1Neuralnetworkmodeltoclassifytreeleaves

Ourdutyistofindanapproachtohowtoclassifyleaves.WeuseNeuralnetworkmodeltoclassifytreeleaves

Asforclassification,Neuralnetworkmodelisgreatlyabletogetafairlyidealconclusion.Todistinguishoneleafshapepatternsfromeachother,Neuralnetworkmodelisoptimal.Throughastudysampleprogressonandoff,inwhichweadjustaccordingly.Eventuallyourmodelisso“smart”astoidentifydifferentleafshapes.Aleafsamplecharacterize8featuresasmentioned-above.Anditisnecessaryforustoexplainthemodelandweseparateasthreepartstoexpatiate.

6.1.1Neuromime

Thefollowgraphisabasepartof.

Figure6.1-1:neuromime

Solutiontoinputsignal:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

1

)

Whereistheweight,istheinputnodevalue:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

2

)

isThresholdvalue:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

3

)

isactivationfunction,istheoutputofaneuroninthesuccessivelayer.Theactivationfunctionisanonlinearfunctionandisgivenby:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

4

)

6.1.2Multi-layerperceptronnetwork

Thisisthemainstructureof.

Figure6.1-2:Multi-layerperceptronnetwork

ThestructureoftheArtificialNeuralNetworkANNinthisworkcontainsthreelayers:input,hiddenandoutputlayersasshowninfigure6.1-2.Weuseinputlayertoinputthecharacteristicsoftheleaves.Eachlayercontainsandnodes.Thenodeisalsocalledneuronorunit.ThisstudysummarizedeightfactorsforANNinput,thatistosay.Theeightinputunitsaresawtoothnumber,petiolelength,bladelength,bladewidth,bladethickness,leafareaandcirculardegree.

Forthehiddenlayerwemake.Thefunctionoftheoutputlayeristooutputclassifiedinformationcorrespondingtotheinputdata.Thevalueofrangesfromthetypesofleavesweneedtoidentify.Theisdenotedasnumericalweightsbetweeninputandhiddenlayers,betweenhiddenandoutputlayersasalsoshowninfigure6.1-2.

Infact,asforasampleof“”,theinputofthehiddenlayeris:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

5

)

Thecorrespondingoutputstate:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

6

)

Therefore,thesuperimposedsignalreceivedis:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

7

)

Thefinaloutputofthenetworkis:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

8

)

Wehopethefinaloutputisidealization.Forexample.Forexample,afterlearningmapleleaf‘sfeatures,iftheoutputisliketheformof,wecalledtheoutputlikethistheidealoutput,theidealoutputisnotedfor.

Figure6.1-2:Differenttypesofshapes

Linear.Lanceolate.Oblanceolate.Spatulate.Ovate.Obovate.Elliptic.Oblong.Deltoid.Reniform.Orbicular.Peltate.PerfoliateConnate.

6.1.3Back-propogation

Inordertominimizingthedifferencesbetweenactualoutputanddesiredoutput,wechooseBPalgorithm,whichisonepartof.

Assetforth,theerrorobtainedwhentrainingapair(pattern)consistingofbothinputandoutputgiventotheinputlayerofthenetworkisgivenby:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

9

)

Whereisthethcomponentofthedesiredoutputvectorandisthecalculatedoutputofthneuronintheoutputlayer.

Combine

GOTOBUTTONZEqnNum106698

REFZEqnNum106698\*Charformat\!

(8)

with

GOTOBUTTONZEqnNum233133

REFZEqnNum233133\*Charformat\!

(9)

,wecandraw:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

10

)

Thisisanonlinearfunctionwhichiscontinuouslydifferentiable.Inordertoobtaintheminimumpointandthevalue,themostconvenientistousethesteepestdescentmethodtogettheminimalvalueof,when,wegettheidealvalueofthevariablesand.

6.1.4NN’susetoclassifyleaves

Through,singleseveralmodelsleavesandgroupingandnumberofthem.Then,learningeachgroup,isacquaintanceeachmodels.Ifwanttoclassifyoneleaf.Weareabletolettosolvethisproblem,eventually,weclassifytheleafaslike-model.

6.2Studyingthereasonsofthevariousshapesthatleaveshave.

Leaveshaveavarietyofforms.Therearelotsofreasonsaccountforleavesvaryinginshapesandsize,listedasfollows:Overall,thereasonscanbedividedintoexternalandinternalfactors.

Externalfactors:

Seasonsandclimate(includingwind,sunlight,moisture,temperature);

Plantdiseasesandinsectpests;

Artificialfactor;

Internalfactors:

Deformationofcells,moisturelossofMesophyllcellsmaycausevolumedecrease;

Phytohormoneauxin;

Differencegene.

webelievethatthereexits4basefactorsthatleadtothevarietyofleavesshape.Theyareclimate,disease,phytohormoneandgene.Andweendeavorfindoutreasonstothem.

climate:thechangeofsunshine,water,temperature,humiditywhichaltersleavesshape.

disease:througheffectingtheactivityofanenzyme,sothatinfluenceleavesshape.

Phytohormoneauxin:haveinfluenceongeneexpression

gene:throughDNAdeterminethegeneralleafshape

6.2.1SetupaAHPmodeltovaluethesebasefactors

Wesolvethisproblembasedonthereasonslistedabove.Afteranalyzingallofthem,weholdanopinionthathumanattemptisusuallyfairlyhaphazard.Sinceweviewalltheleaves’livingenvironmentisstable,wedon’ttakeartificialfactorintoconsideration.Wedefinite"totalimpact"as"targetlayer”,andclimate,disease,phytohormone,geneasthe"criterionlayer".Asshowninthefollowingfigure6.2-1:

Totalimpact

Climate

Disease

Auxin

Gene

Figure6.2-1:reasonsforthevariousshapes

6.2.2Pairedcomparisonmatrixstructure

Toanalyzetheeffectsofelectricvehicles’widespreaduseontheenvironment,social,economicandhealth,weeachtaketwofactors:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

11

)

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

12

)

Theyareusedtorepresentenvironmental,economic,socialandhealthbyturns.Allresultsareavailablethefollowingpairwisecomparisonmatrix:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

13

)

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

14

)

Obviously:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

15

)

Theresultweusedpairedcomparisonofthepairedcomparisonmatrixis:

Whenwetakecomparisonofthemqualitatively,therearefiveclearhierarchyinpeople'smindsusually,whichisexpressedas:

Table6.1-1:themeaningoftheMeasure1-9

Meaning

1

andhavethesameinfluence

3

hasaslightlystrongerinfluencethan

5

hasstrongerinfluencethan

7

hassignificantlystrongerinfluencethan

9

hasAbsolutelystrongerinfluencethan

2,4,6,8

heratiooftheinfluenceof

to

locatesbetweenthetwonearclasses

1,1/2,,1/9

heratioof

is

the

reciprocal

of

6.2.3Calculationoftheweightvectorandtheconsistencytest

UseMATLABsoftwaretocalculatethepairwisecomparisonmatrixforthelargesteigenvalueandthemaximumeigenvectorthattheeigenvaluecorresponding.Thenwewillnormalizationtheabove-mentionedvector,thenormalizedresultsastheweightvectorofthecomparisonfactor.Followingtheresults:

Usually,thepairscomparisonmatrixisnotthesamearray.Butifitsfeaturevectorsofeigenvaluecorrespondingcanbeusedasaweightvectoroffactorstobecompared,theextentofitsinconsistencyshouldbewithintherangeof:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

16

)

Selecting0.1inthistypehasacertainsubjectivewishes.

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

17

)

representsconsistencyindex,representsitsRandomConsistencyIndex,representsitsconsistencyratio.

Table6.1-2:

1

2

3

4

5

6

7

8

9

10

0

0

0.58

0.90

1.12

1.24

1.32

1.41

1.45

1.49

Fromtheequationabovewecandraw:

Fromthetableabove,wecanget:

Thecorrespondingis

Thismeansourmodelhaspassedtheconsistencytest,canbeusedasaweightvector.

Fromtheanalysisweelicitaconclusionthatgeneismaximallyimpacted,andthengene,phytohormone,climate,deaseisfollowing.

6.3Optimizeleavesshapeformaximizeexposure

6.3.1Explainandanswerrequirment

Fromthemodel2’sconclusionwegetabove,weacquaintthatsunlightisacriticalfactorforplants.Plantsarephotoautotrophs,obtaintheirownenergythroughphotosynthesisandproduceoxygeninthemeantime.Fromevolutionaryconsiderations,itseemsthattheleavesalwaysinafavorabledirection,sothattheycanmaximizetheirexposuretothesun.Asisconsideredabove,sunlightchangesthebladeshapethroughinfluencingthedistributionofgrowthhormones.Thuswediscussthisissuefromtheperspectiveofgrowthhormones.Firstofall,weneedtoknowmorespecificallyhowgrowthhormonesaffectleaves.Growthhormonesisadirectionaltransport,butsometimesittransportstothebacklight.Byinhibitingthegrowthoftheshadedsidetoeffectsthephototropismmovementofplants.Duetothisphenomenonleaves“dotheirbestefforts”makethemselvesexposed.Inotherwords,Itistominimizemutualshadingimpact.Wetrytobuildcellsmechanicmodeltosolvethisproblem,meanwhile,explainreasonsforthisphenomenon.

Conclusion:plantsalways“optimize”theirleavesshapeformaximizeexposure.Putanotherway,theyare“minimize”overlappingindividualshadowsthatarecast.Theresultcanprimelyexplainthereasons.

6.3.2SetupaElasticmechanicsmodel

WechooseElasticmechanicsmodeltosimplifyandimitatePhysicalforceofmesophyllcells.Weassumethateachcellofleafissubjecttotwoforces,oneistheexpansiveforcegeneratedbycytoplasmofcellsinside;anotheroneisexternaltensiongeneratedbycellwall,asshowninfigure6.3-1.

Figure6.3-1:Elasticrigidmodel

Inordertodescribethetwophysicalforcesleafcellssufferedmoreaccurately.Wecanbuildcontractivespringtopresenttheexpansiveforceofthecell,similarly,tensionspringscanbeusedtoexpressthetensionbetweenthecells.Therefore,onlythesetwoforcesbalanceeachother,acellcanstayinstablegeometrywhichcanusethefollowingequationtoexpress.

Whereiscells’originallengthinthesaturatedstate,presentsthelengthafterpowerexpansionandisexternalimpulse,representsspringstiffness.

Thismodeldescribebecauseofthephotosynthesis,cellsaffectedbygrowthhormones,leadingtoaresultthattheshapes“minimize”overlappingindividualshadowsthatarecast,soastomaximizeexposure.

Thus,aleaftendstoincreasethesurfaceareaaslargeaspossibletomaximizemetaboliccapacity,becausemetabolismproducestheenergyandmaterialsrequiredtosustainandreproducelife.

6.4Treeprofileandbranchingstructure’sinfluenceonleafshape.

Westrivetoexploretherelationshipsbetweendistributionofleaveswithinthe“volume”ofthetreeandleavesshape.

6.4.1Analysisabouttheimpactoftreeprofiletoleafshape

Weanalyzethisproblembasedonbiology.Wetaketheinfluenceofwindintoconsiderationinadditiontothosefourfactorsabove.Especiallyforthosehugetrees,spatialdistributionwouldinfluencetheleafshape,namelytheanswertothisquestionispositive.Becauseofthecomplexityofgeneticmutation,wesolvethisproblembasedonenvironmentandauxinwithoutregardtogenemutation.Weusetheimpactofwindinsteadofenvironmentalinfluence.

Auxinsarenotsynthesizedinallcells(evenifcellsretainthepotentialabilitytodoso,onlyunderspecificconditionswillauxinsynthesisbeactivatedinthem).Forthatpurpose,auxinshavetobetranslocatedtowardthosesiteswheretheyareneeded.Translocationisdriventhroughouttheplantbody,primarilyfrompeaksofshootstopeaksofroots.Polarauxintransportwouldleadtophyllotaxisdisorderandleavesofdifferentsize.(fromdevelopmentmechanismoftheleaves).Astheresult,someleaveswellbeenrichedresponsetounevendistributionoftheauxins.[8]Leavesawayfromsunmayhavebiggerleafareatogetmoresunlight.Duetotheinfluenceofwind,thedownwindleavesweresignificantlybetterthanthoseinupwinddirection.

Conclusion:leavesshapeareinfluencedbyleaves’three-dimensionaleffectatthetreeanditsbranches.

Setupmathematicfunctions

Spaceanalysisonatreeasisshowninfigure.Nowwechoosealeaflocatedintostudyits’shape.Determineleafshapethroughintegratedimpactsofauxin,sunlightandwind.Weprovideacoefficienttoindicatetheleafshape:

Figure6.4-1:Treespacecoordinatesystem

Weprovideacoefficienttoindicatetheleafshape:

Wheresisleafarea,isthelengthofleaf,isthewidthofleaf.

Findoutspacefunctionexpressionsaboutthethreefactors:

WhereNisAuxinconcentrations,isLightflux,isleafsurface,iswindforce,iswindspeedandisaconstantcoefficient,whichusedtoquantifytheinfluenceofwind

Thenwecanget:

Auxinconcentrations:

Lightflux:

Weintroduce

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

18

)

Thenwecanget:

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

19

)

MACROBUTTONMTPlaceRef

SEQMTEqn\h

(

SEQMTEqn\c\*Arabic

20

)

whereisweedspeed,isLuminousflux,whichusedtoquantifytheinfluenceofwind,isthecorresponingweightcoefficient.

Whethertreebranchinginfluenceleavesshape.

Firstly,webelievethatthemainfeatureoftreeprofilewouldbetreeshape.duetothesubtledifferencesoflight,temperature,humidityandvelocityofwindamongdifferenttreeshapes,sothatleafshapesarevarious.Inaword,leafshapesarerelativetotreeshapes.Thereisagraphwecanoffer.

Table6.4-1:someexplanation

:

crowntypeparameter

leafareaindex

meantiltangle

scatteredlightsitefigure

directlightsitefigure

generallightsitefigure

Table6.4-2:Thecanopycharacteristicsindexesunderdifferenttreeshape

Treeshape

LAI

ELADP

MLA

ISF

DSF

CSF

Opencebtershape

Spindleshape

Disperselaminationshape

Note:Differentlettersincolumnsofthetableshowthesignificantdifferences()

Treeswithopencebtershapehavetheadvantagesofreceivingmoresunlight.It’slowerthantheothertwo,lowerthanspindleshape,lowerthandisperselaminationshape.

haslargerlightsitecoefficientthantheothertwoshapes.Its’,andare、、largerthanandis、、largerthan.

TreeswithSpindleshapehavegrowingweakness,noapparentspacingbetweenlayersandpoorlighting.Its’LAIisthebiggestamongthethreeshapes.Its’increasingrangofISFis25%higherthan,its’andis,lowerthan.

Soitisobviouslythatleafshaperelatestotreeshape.

6.4.2Electrictreebranchangle’simpactanalysis

Inadditiontotreeprofile,treebranchanglesalsoinfluenceleafshapes.Figureshowsdifferenttreebranchangleeffectonthetreearea.

Whentwonewbranchunits(unit3andunit5)arisefromthedistalendofapreviousunit(motherunit)thereisaregularasymmetryinthebranchangles(θ1andθ2,respectively)aprevioustheoreticalmodelfortreelikebodiestodevelopareliablecomputersimulationoftreegeometryforthisspecies.Thetreelikebodiesintheoriginal,theoreticalmodelweredevelopedwithonlytwoparameters,theratioofmothertodaughterbranchunitlengthsandtheasymmetryofforking.

Figure6.4-2:Treebranchangle’simpactonleafarea.

Figure6.4-2isvariationoftheeffectiveleafareaofabranchtierdependingonthebranchangles,and.ThetiterofthefivelateralbranchcomplexesissimulatedwiththreeordersofbifurcationaccordingtotherulesofTerminalia-branching.Thedivergenceangleofthefirstbranchunitofeachbranchcomplexequals.Thesignofthebranchanglesofthefirstbranchunitineachsuccessivebranchcomplexalternate.Theratiosofbranchlengthsofunits3and5tothatoftheirmotherunitare0.94and0.87,respectively.Theradiusoftheleafdiskapproximationis0.8wherethelengthofthelongestdistalbranchunitisunity.Simulationsofthebranchtiersareprojectedonahorizontalplane.and,respectively,areasfollows:(a)and-;(b)and;(c)and;(d)and;(e)and.Maximumeffectiveleafareais(c)

Figureshowsthattheobservedbranchanglesresultinthemaximumeffectiveleafsurfacepossibleforabranchsystemthatfollowsthispatternofbranching.Inaddition,thenaturalconstraintsonbifurcationoflateralbranchesresultinagreatereffectiveleafareaperleafclusterthanwhenbranchingisunrestrained.

Conclusion:WegettheconclusionthatbranchingpatterninTerminaliaiscorrelatedwithefficientpresentationofleafsurfacetodirectsunlightratherthansimplywithmaximumtotalleafsurface.

6.5Estimationoftheleafmass

Asisknowntoall,atreeusuallyhastensofthousandsofleaveswhichwecannotaccuratelycountevenbymoderninstruments.Soit’shardtocalculatetheleafmassofatreeprecisely.Butwecantrytolookingforsomech

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論