2023年山西省太原市迎澤區(qū)太原五中數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題含解析_第1頁
2023年山西省太原市迎澤區(qū)太原五中數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題含解析_第2頁
2023年山西省太原市迎澤區(qū)太原五中數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題含解析_第3頁
2023年山西省太原市迎澤區(qū)太原五中數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題含解析_第4頁
2023年山西省太原市迎澤區(qū)太原五中數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,,,點C在AB上,且,設(shè),則的值為()A. B. C. D.2.下列函數(shù)中,圖象的一部分如圖所示的是()A. B.C. D.3.經(jīng)過點,和直線相切,且圓心在直線上的圓方程為()A. B.C. D.4.如圖,為正三角形,,,則多面體的正視圖(也稱主視圖)是A. B. C. D.5.函數(shù)的最大值為A.4 B.5 C.6 D.76.已知三角形ABC,如果,則該三角形形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上選項均有可能7.“結(jié)繩計數(shù)”是遠古時期人類智慧的結(jié)晶,即人們通過在繩子上打結(jié)來記錄數(shù)量.如圖所示的是一位農(nóng)民記錄自己采摘果實的個數(shù).在從右向左依次排列的不同繩子上打結(jié),滿四進一.根據(jù)圖示可知,農(nóng)民采摘的果實的個數(shù)是()A.493 B.383 C.183 D.1238.如圖,已知正三棱柱的底面邊長為2cm,高為5cm,則一質(zhì)點自點A出發(fā),沿著三棱柱的側(cè)面繞行兩周到達點的最短路線的長為()cm.A.12 B.13 C.14 D.159.在中,,,其面積為,則等于()A. B. C. D.10.如圖,設(shè)是正六邊形的中心,則與相等的向量為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的單調(diào)遞減區(qū)間為______.12.在公比為q的正項等比數(shù)列{an}中,a3=9,則當(dāng)3a2+a4取得最小值時,=_____.13.甲、乙兩名射擊運動員進行射擊比賽,甲的中靶概率為0.8,乙的中靶概率為0.7,現(xiàn)兩人各自獨立射擊一次,均中靶的概率為______.14.已知內(nèi)接于拋物線,其中O為原點,若此內(nèi)接三角形的垂心恰為拋物線的焦點,則的外接圓方程為_____.15.如圖,在中,,,,則________.16.設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項和為{Sn}.若,,則q=______________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,四棱錐中,底面為矩形,面,為的中點.(1)證明:平面;(2)設(shè),,三棱錐的體積,求A到平面PBC的距離.18.如圖,在平面直角坐標(biāo)系中,點為單位圓與軸正半軸的交點,點為單位圓上的一點,且,點沿單位圓按逆時針方向旋轉(zhuǎn)角后到點(1)當(dāng)時,求的值;(2)設(shè),求的取值范圍.19.如圖,在四棱錐中,底面是菱形,底面.(Ⅰ)證明:;(Ⅱ)若,求二面角的余弦值.20.已知數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式;(2)若,設(shè)數(shù)列的前n項和為,證明.21.甲乙兩地生產(chǎn)某種產(chǎn)品,他們可以調(diào)出的數(shù)量分別為300噸、750噸.A,B,C三地需要該產(chǎn)品數(shù)量分別為200噸,450噸,400噸,甲地運往A,B,C三地的費用分別為6元/噸、3元/噸,5元/噸,乙地運往A,B,C三地的費用分別為5元/噸,9元/噸,6元/噸,問怎樣調(diào)運,才能使總運費最???

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識的綜合應(yīng)用.2、D【解析】

設(shè)圖中對應(yīng)三角函數(shù)最小正周期為T,從圖象看出,T=,所以函數(shù)的最小正周期為π,函數(shù)應(yīng)為y=向左平移了個單位,即=,選D.3、B【解析】

設(shè)出圓心坐標(biāo),由圓心到切線的距離和它到點的距離都是半徑可求解.【詳解】由題意設(shè)圓心為,則,解得,即圓心為,半徑為.圓方程為.故選:B.【點睛】本題考查求圓的標(biāo)準(zhǔn)方程,考查直線與圓的位置關(guān)系.求出圓心坐標(biāo)與半徑是求圓標(biāo)準(zhǔn)方程的基本方法.4、D【解析】

為三角形,,平面,

且,則多面體的正視圖中,

必為虛線,排除B,C,

說明右側(cè)高于左側(cè),排除A.,故選D.5、B【解析】試題分析:因為,而,所以當(dāng)時,取得最大值5,選B.【考點】正弦函數(shù)的性質(zhì)、二次函數(shù)的性質(zhì)【名師點睛】求解本題易出現(xiàn)的錯誤是認為當(dāng)時,函數(shù)取得最大值.6、B【解析】

由正弦定理化簡已知可得:,由余弦定理可得,可得為鈍角,即三角形的形狀為鈍角三角形.【詳解】由正弦定理,,可得,化簡得,由余弦定理可得:,又,為鈍角,即三角形為鈍角三角形.故選:B.【點睛】本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.7、C【解析】

根據(jù)題意將四進制數(shù)轉(zhuǎn)化為十進制數(shù)即可.【詳解】根據(jù)題干知滿四進一,則表示四進制數(shù),將四進制數(shù)轉(zhuǎn)化為十進制數(shù),得到故答案為:C.【點睛】本題以數(shù)學(xué)文化為載體,考查了進位制等基礎(chǔ)知識,注意運用四進制轉(zhuǎn)化為十進制數(shù),考查運算能力,屬于基礎(chǔ)題.8、B【解析】

將三棱柱的側(cè)面展開,得到棱柱的側(cè)面展開圖,利用矩形的對角線長,即可求解.【詳解】將正三棱柱沿側(cè)棱展開兩次,得到棱柱的側(cè)面展開圖,如圖所示,在展開圖中,最短距離是六個矩形對角線的連線的長度,即為三棱柱的側(cè)面上所求距離的最小值,由已知求得的長等于,寬等于,由勾股定理得,故選B.【點睛】本題主要考查了棱柱的結(jié)構(gòu)特征,以及棱柱的側(cè)面展開圖的應(yīng)用,著重考查了空間想象能力,以及轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.9、A【解析】

先由三角形面積公式求出,再由余弦定理得到,再由正弦定理,即可得出結(jié)果.【詳解】因為在中,,,其面積為,所以,因此,所以,所以,由正弦定理可得:,所以.故選A【點睛】本題主要考查解三角形,熟記正弦定理和余弦定理即可,屬于基礎(chǔ)題型.10、D【解析】

容易看出,四邊形是平行四邊形,從而得出.【詳解】根據(jù)圖形看出,四邊形是平行四邊形故選:【點睛】本題考查相等向量概念辨析,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用二倍角降冪公式和輔助角公式可得出,然后解不等式,即可得出函數(shù)的單調(diào)遞減區(qū)間.【詳解】,解不等式,得,因此,函數(shù)的單調(diào)遞減區(qū)間為.故答案為:.【點睛】本題考查正弦型三角函數(shù)單調(diào)區(qū)間的求解,一般利用三角恒等變換思想將三角函數(shù)解析式化簡,考查計算能力,屬于中等題.12、【解析】

利用等比數(shù)列的性質(zhì),結(jié)合基本不等式等號成立的條件,求得公比,由此求得的值.【詳解】∵在公比為q的正項等比數(shù)列{an}中,a3=9,根據(jù)等比數(shù)列的性質(zhì)和基本不等式得,當(dāng)且僅當(dāng),即,即q時,3a2+a4取得最小值,∴l(xiāng)og3q=log3.故答案為:【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查基本不等式的運用,屬于基礎(chǔ)題.13、0.56【解析】

根據(jù)在一次射擊中,甲、乙同時射中目標(biāo)是相互獨立的,利用相互獨立事件的概率乘法公式,即可求解.【詳解】由題意,甲的中靶概率為0.8,乙的中靶概率為0.7,所以兩人均中靶的概率為,故答案為0.56【點睛】本題主要考查了相互獨立事件的概率乘法公式的應(yīng)用,其中解答中合理利用相互獨立的概率乘法公式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、【解析】

由拋物線的對稱性知A、B關(guān)于x軸對稱,設(shè)出它們的坐標(biāo),利用三角形的垂心的性質(zhì),結(jié)合斜率之積等于﹣1即可求得直線MN的方程,即可求出點C的坐標(biāo),問題得以解決.【詳解】∵拋物線關(guān)于x軸對稱,內(nèi)接三角形的垂心恰為拋物線的焦點,三邊上的高過焦點,∴另兩個頂點A,B關(guān)于x軸對稱,即△ABO是等腰三角形,作AO的中垂線MN,交x軸與C點,而Ox是AB的中垂線,故C點即為△ABO的外接圓的圓心,OC是外接圓的半徑,設(shè)A(x1,2),B(x1,﹣2),連接BF,則BF⊥AO,∵kBF,kAO,∴kBF?kAO=?1,整理,得x1(x1﹣5)=1,則x1=5,(x1=1不合題意,舍去),∵AO的中點為(,),且MN∥BF,∴直線MN的方程為y(x),當(dāng)x1=5代入得2x+4y﹣91,∵C是MN與x軸的交點,∴C(,1),而△ABO的外接圓的半徑OC,于是得到三角形外接圓方程為(x)2+y2=()2,△OAB的外接圓方程為:x2﹣9x+y2=1,故答案為x2﹣9x+y2=1.【點睛】本題考查拋物線的簡單性質(zhì),考查了兩直線垂直與斜率的關(guān)系,是中檔題15、【解析】

先將轉(zhuǎn)化為和為基底的兩組向量,然后通過數(shù)量積即可得到答案.【詳解】,.【點睛】本題主要考查向量的基本運算,數(shù)量積運算,意在考查學(xué)生的分析能力和計算能力.16、【解析】將,兩個式子全部轉(zhuǎn)化成用,q表示的式子.即,兩式作差得:,即:,解之得:(舍去)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)到平面的距離為【解析】

試題分析:(1)連結(jié)BD、AC相交于O,連結(jié)OE,則PB∥OE,由此能證明PB∥平面ACE.(2)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出A到平面PBD的距離試題解析:(1)設(shè)BD交AC于點O,連結(jié)EO.因為ABCD為矩形,所以O(shè)為BD的中點.又E為PD的中點,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由題設(shè)易知,所以故,又所以到平面的距離為法2:等體積法由,可得.由題設(shè)易知,得BC假設(shè)到平面的距離為d,又因為PB=所以又因為(或),,所以考點:線面平行的判定及點到面的距離18、(1);(2)【解析】

(1)由三角函數(shù)的定義得出,通過當(dāng)時,,,進而求出的值;(2)利用三角恒等變換的公式化簡得,得出,進而得到的取值范圍.【詳解】(1)由三角函數(shù)的定義,可得當(dāng)時,,即,所以.(2)因為,所以,由三角恒等變換的公式,化簡可得:,因為,所以,即的取值范圍為.【點睛】本題主要考查了任意角的三角函數(shù)的定義,兩角和與差的正、余弦函數(shù)的公式的應(yīng)用,以及正弦函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的定義與性質(zhì),以及兩角和與差的三角函數(shù)的運算公式,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.19、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)由底面推出,由菱形的性質(zhì)推出,即可推出平面從而得到;(Ⅱ)作,交的延長線于,連接,則二面角的平面角是,由已知條件求出AD,進而求出AE、PD,即可求得.【詳解】(Ⅰ)證明:連接,∵底面,底面,∴.∵四邊形是菱形,∴.又∵,平面,平面,∴平面,∴.(Ⅱ)作,交的延長線于,連接.由于,于是平面,平面,,所以二面角的平面角是.設(shè)“”,且底面是菱形,,,,∴.【點睛】本題考查線面垂直、線線垂直的證明,二面角的余弦值,屬于中檔題.20、(1);(2)見解析.【解析】【試題分析】(1)借助題設(shè)中的數(shù)列遞推式探求數(shù)列通項之間的關(guān)系,再運用等比數(shù)列的定義求得通項公式;(2)依據(jù)(1)的結(jié)論運用錯位相減法求解,再借助簡單縮放法推證:(1)當(dāng)時,得,當(dāng)時,得,所以,(2)由(1)得:,又①得②兩式相減得:,故,所以.點睛:解答本題的思路是充分借助題設(shè)條件,先探求數(shù)列的的通項公式,再運用錯位相減法求解前項和.解答第一問時,先借助題設(shè)中的數(shù)列遞推式探求數(shù)列通項之間的關(guān)系,再運用等比數(shù)列的定義求得通項公式;解答第二問時,先依據(jù)(1)中的結(jié)論求得,運用錯位相減求和法求得,使得問題獲解.21、甲到B調(diào)運300噸,從乙到A調(diào)運2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論