




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022學年上海中山學校高一數(shù)學文上學期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.函數(shù)f(x)的部分圖象如圖所示,則下列選項正確的是()A.
B.f(x)=xcosx
C.
f(x)=x·(x-)·(x-)
D.f(x)=參考答案:B略2.函數(shù)的定義域是(
)A.
B.
C.
D.參考答案:D略3.已知p是真命題,q是假命題,則下列復合命題中的真命題是(
)
A.且
B.且
C.且
D.或參考答案:D4.設為的函數(shù),對任意正實數(shù),,,,則使得的最小實數(shù)為A.45
B.65
C.85
D.165
參考答案:B略5.化簡的結(jié)果為()A.sinα?cosα B.﹣sinα?cosα C.sin2α D.cos2α參考答案:A【考點】運用誘導公式化簡求值.【分析】由條件利用誘導公式進行化簡所給的式子,可得結(jié)果.【解答】解:==sinαcosα,故選:A.6.圖1是由圖2中的哪個平面圖旋轉(zhuǎn)而得到的(
)參考答案:A7.若,則 ( )A.1 B.-1 C. D.參考答案:A試題分析:上下同時除以,可得,解得:,故選A.考點:同角三角函數(shù)基本關(guān)系
8.組委會要從小張、小趙、小李、小羅、小王五名志愿者中選派四人分別從事翻譯、導游、禮儀、司儀、司機思想不同工作,若其中小張和小趙只能從事前兩項工作,其余三人均能從事這思想工作,則不同的選派方案共有().A.36種 B.12種 C.18種 D.48種參考答案:A若小張或小趙入選,有選法:種,若小張,小趙都入選,有:種,可知共有種.選.9.已知向量=(1,m),=(3,﹣2),且(+)⊥,則m=()A.﹣8 B.﹣6 C.6 D.8參考答案:D【考點】平面向量的基本定理及其意義.【分析】求出向量+的坐標,根據(jù)向量垂直的充要條件,構(gòu)造關(guān)于m的方程,解得答案.【解答】解:∵向量=(1,m),=(3,﹣2),∴+=(4,m﹣2),又∵(+)⊥,∴12﹣2(m﹣2)=0,解得:m=8,故選:D.【點評】本題考查的知識點是向量垂直的充要條件,難度不大,屬于基礎(chǔ)題.10.若不等式的解集是,則不等式的解集是(
).A. B. C.[-2,3] D.[-3,2]參考答案:D【分析】先由題意求出,再代入不等式,求解,即可得出結(jié)果.【詳解】因為不等式的解集是,所以,解得,所以不等式可化為,即,解得.故選D【點睛】本題主要考查一元二次不等式的解法,熟記三個二次之間的關(guān)系即可,屬于基礎(chǔ)題型.二、填空題:本大題共7小題,每小題4分,共28分11.已知,全集,則__________參考答案:略12.求值sin(﹣)+cos=.參考答案:0略13.把化為的形式即為_______________.
參考答案:。14.已知等差數(shù)列的前
項和為,且,,則
;參考答案:6015.如下圖的倒三角形數(shù)陣滿足:①第一行的第n個數(shù),分別是;②從第二行起,各行中的每一個數(shù)都等于它肩上的兩數(shù)之和;③數(shù)陣共有n行;問:第32行的第17個數(shù)是
.
參考答案:16.老師給出一個函數(shù),四個學生甲、乙、丙、丁各指出這個函數(shù)的一個性質(zhì):甲:對于,都有;乙:在上函數(shù)遞減;丙:在上函數(shù)遞增;?。翰皇呛瘮?shù)的最小值。如果其中恰有三人說得正確,請寫出一個這樣的函數(shù)
。參考答案:略17.某運動會開了n天(n>1),共發(fā)出m枚獎牌:第一天發(fā)出1枚加上余下的,第二天發(fā)出2枚加上余下的;如此持續(xù)了(n–1)天,第n天發(fā)出n枚。該運動會開了________天,共發(fā)了____________枚獎牌。參考答案:6,36;三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.若是定義在上的奇函數(shù),且為增函數(shù),求不等式的解集.參考答案:【分析】根據(jù)奇偶性將不等式化為,根據(jù)函數(shù)定義域和單調(diào)性可得不等式組,解不等式組求得結(jié)果.【詳解】為奇函數(shù)
等價于定義域為且為增函數(shù),解得:不等式的解集為:【點睛】本題考查利用函數(shù)奇偶性和單調(diào)性求解不等式的問題,易錯點是忽略函數(shù)定義域的要求,造成求解錯誤.19.已知全集U=R,A={x|﹣3≤x≤1},B={x|﹣1<x<3},求A∪B,、A∩B,CUA.參考答案:【考點】交、并、補集的混合運算.【專題】計算題;集合思想;定義法;集合.【分析】根據(jù)集合的基本運算進行求解即可.【解答】解:全集U=R,A={x|﹣3≤x≤1},B={x|﹣1<x<3},∴A∪B={x|﹣3≤x<3},A∩B={x|﹣1<x≤1},CUA={x|x<﹣3,或x>1}.【點評】本題考查集合的交、并、補的混合運算,基本知識的考查.20.(本小題12分)已知全集,,.(1)求;(2)若且,求a的取值范圍.參考答案:解:(1)因為,∴
……………4分所以
……………6分(2)由得
……………7分當時,∴
∴
……………9分當且時
……………11分綜上所述:
……………12分
21.(12分)求值:(1)(2)﹣2sin2(﹣)+sin(π+α)參考答案:考點: 三角函數(shù)的化簡求值.專題: 三角函數(shù)的求值.分析: 直接根據(jù)三角公式進行化簡即可.解答: (1)原式===;(2)原式=.點評: 本題重點考查了三角公式、三角恒等變換等知識,屬于基礎(chǔ)題.22.在△ABC中,角A,B,C所對的邊長分別是a,b,c.(1)若sinC+sin(B-A)=sin2A,試判斷△ABC的形狀;(2)若△ABC的面積S=3,且c=,C=,求a,b的值.參考答案:(1)由題意得sin(B+A)+sin(B-A)=sin2A,sinBcosA=sinAcosA,即cosA(sinB-sinA)=0,cosA=0
或sinB=sinA.
……3分因A,B為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 開發(fā)區(qū)酒店建設設計合同書6篇
- 場物業(yè)管理合同書
- 供熱工程施工合同協(xié)議
- 建筑材料供應合同(大沙、石子)6篇
- 建房施工勞務合同
- 2025年廣東貨運從業(yè)資格證模擬考試
- 醫(yī)用護理床采購合同范本
- 中國書法的演講稿
- 高壓電工(運行)試題庫(附參考答案)
- 供貨合同范本 律師博客
- 淺談至本品牌在營銷方面存在的問題及對策
- 仲裁法全套課件
- 2024年4月貴州省高三年級適應性考試物理試卷
- 2021年10月自考00371公安決策學試題及答案含解析
- 2024屆安徽省安慶市高三下學期二模數(shù)學試題及答案
- (2024年)師德師風學習內(nèi)容教師師德師風培訓內(nèi)容通用多篇
- 運維國企招聘筆試題庫
- 2024年興業(yè)數(shù)字金融服務上海股份有限公司招聘筆試參考題庫含答案解析
- 基層工會經(jīng)費收支管理講課稿課件
- 抗磷脂綜合征診療規(guī)范
- 心肺復蘇高效團隊
評論
0/150
提交評論