




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
商丘市重點中學(xué)2024年數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的定義域為,集合,則()A. B. C. D.2.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.3.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.4.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.記等差數(shù)列的公差為,前項和為.若,,則()A. B. C. D.6.已知復(fù)數(shù),則的虛部為()A.-1 B. C.1 D.7.已知滿足,則()A. B. C. D.8.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設(shè)橢圓和雙曲線的離心率分別為,則的關(guān)系為()A. B.C. D.9.若不等式對于一切恒成立,則的最小值是()A.0 B. C. D.10.函數(shù)的圖象在點處的切線為,則在軸上的截距為()A. B. C. D.11.已知的內(nèi)角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.12.在三角形中,,,求()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,半圓的直徑AB=6,O為圓心,C為半圓上不同于A、B的任意一點,若P為半徑OC上的動點,則的最小值為.14.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.15.已知向量滿足,且,則_________.16.執(zhí)行右邊的程序框圖,輸出的的值為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.18.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點、分別為,的中點,且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.19.(12分)如圖,在直角中,,,,點在線段上.(1)若,求的長;(2)點是線段上一點,,且,求的值.20.(12分)如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側(cè)的部分交于、兩點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求四邊形面積的取值范圍.21.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為.(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程及的直角坐標(biāo)方程;(2)求曲線上的點到距離的取值范圍.22.(10分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,,是線段的中點.(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
根據(jù)函數(shù)定義域得集合,解對數(shù)不等式得到集合,然后直接利用交集運(yùn)算求解.【題目詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【題目點撥】本題考查了交集及其運(yùn)算,考查了函數(shù)定義域的求法,是基礎(chǔ)題.2、A【解題分析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【題目詳解】由平面向量基本定理,化簡,所以,即,故選A.【題目點撥】本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡得到是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,數(shù)基礎(chǔ)題.3、A【解題分析】
根據(jù)題意,用表示出與,求出的值即可.【題目詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.【題目點撥】本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.4、C【解題分析】
由余弦函數(shù)的單調(diào)性找出的等價條件為,再利用大角對大邊,結(jié)合正弦定理可判斷出“”是“”的充分必要條件.【題目詳解】余弦函數(shù)在區(qū)間上單調(diào)遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.【題目點撥】本題考查充分必要條件的判定,同時也考查了余弦函數(shù)的單調(diào)性、大角對大邊以及正弦定理的應(yīng)用,考查推理能力,屬于中等題.5、C【解題分析】
由,和,可求得,從而求得和,再驗證選項.【題目詳解】因為,,所以解得,所以,所以,,,故選:C.【題目點撥】本題考查等差數(shù)列的通項公式、前項和公式,還考查運(yùn)算求解能力,屬于中檔題.6、A【解題分析】
分子分母同乘分母的共軛復(fù)數(shù)即可.【題目詳解】,故的虛部為.故選:A.【題目點撥】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生運(yùn)算能力,是一道容易題.7、A【解題分析】
利用兩角和與差的余弦公式展開計算可得結(jié)果.【題目詳解】,.故選:A.【題目點撥】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.8、A【解題分析】
設(shè)橢圓的半長軸長為,雙曲線的半長軸長為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【題目詳解】設(shè)橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設(shè),在中,由余弦定理得:,化簡得,即.故選:A【題目點撥】本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.9、C【解題分析】
試題分析:將參數(shù)a與變量x分離,將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,即可得到結(jié)論.解:不等式x2+ax+1≥0對一切x∈(0,]成立,等價于a≥-x-對于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點:不等式的應(yīng)用點評:本題綜合考查了不等式的應(yīng)用、不等式的解法等基礎(chǔ)知識,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題10、A【解題分析】
求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【題目詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【題目點撥】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.11、B【解題分析】
延長到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【題目詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【題目點撥】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.12、A【解題分析】
利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【題目詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【題目點撥】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解題分析】.14、【解題分析】
先由題意設(shè)向量的坐標(biāo),再結(jié)合平面向量數(shù)量積的運(yùn)算及不等式可得解.【題目詳解】由是單位向量.若,,設(shè),則,,又,則,則,則,又,所以,(當(dāng)或時取等)即的取值范圍是,,故答案為:,.【題目點撥】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,意在考查學(xué)生對這些知識的理解掌握水平.15、【解題分析】
由數(shù)量積的運(yùn)算律求得,再由數(shù)量積的定義可得結(jié)論.【題目詳解】由題意,∴,即,∴.故答案為:.【題目點撥】本題考查求向量的夾角,掌握數(shù)量積的定義與運(yùn)算律是解題關(guān)鍵.16、【解題分析】初始條件成立方;運(yùn)行第一次:成立;運(yùn)行第二次:不成立;輸出的值:結(jié)束所以答案應(yīng)填:考點:1、程序框圖;2、定積分.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解題分析】試題分析:(1)根據(jù)已知條件由線線垂直得出線面垂直,再根據(jù)面面垂直的判定定理證得成立;(2)通過已知條件求出各邊長度,建系如圖所示,求出平面的法向量,根據(jù)線面角公式代入坐標(biāo)求得結(jié)果.試題解析:(1)證明:取的中點,連接,則,又,所以,則四邊形為平行四邊形,所以,又平面,∴平面,∴.由即及為的中點,可得為等邊三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴為直線與所成的角,由(1)可得,∴,∴,設(shè),則,取的中點,連接,過作的平行線,可建立如圖所示的空間直角坐標(biāo)系,則,∴,所以,設(shè)為平面的法向量,則,即,取,則為平面的一個法向量,∵,則直線與平面所成角的正弦值為.點睛:判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個平面內(nèi)的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條直線也垂直于這個平面.平面與平面垂直的判定方法:①定義法.②利用判定定理:一個平面過另一個平面的一條垂線,則這兩個平面垂直.18、(1)見解析(2)【解題分析】
(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標(biāo)系,利用空間向量法求出線面角;【題目詳解】解:(1)∵,點為的中點,∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點,∴,∴,又平面,平面,,∴平面.(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標(biāo)系,∵,∴,,,,∴,,,設(shè)平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【題目點撥】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法求線面角,屬于中檔題.19、(1)3;(2).【解題分析】
(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程組即可.【題目詳解】(1)在中,已知,,,由正弦定理,得,解得.(2)因為,所以,解得.在中,由余弦定理得,,即,,故.【題目點撥】本題考查正余弦定理在解三角形中的應(yīng)用,考查學(xué)生的計算能力,是一道中檔題.20、(1);(2).【解題分析】
(1)根據(jù)坐標(biāo)和為等邊三角形可得,進(jìn)而得到橢圓方程;(2)①當(dāng)直線斜率不存在時,易求坐標(biāo),從而得到所求面積;②當(dāng)直線的斜率存在時,設(shè)方程為,與橢圓方程聯(lián)立得到韋達(dá)定理的形式,并確定的取值范圍;利用,代入韋達(dá)定理的結(jié)論可求得關(guān)于的表達(dá)式,采用換元法將問題轉(zhuǎn)化為,的值域的求解問題,結(jié)合函數(shù)單調(diào)性可求得值域;結(jié)合兩種情況的結(jié)論可得最終結(jié)果.【題目詳解】(1),,為等邊三角形,,橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè)四邊形的面積為.①當(dāng)直線的斜率不存在時,可得,,.②當(dāng)直線的斜率存在時,設(shè)直線的方程為,設(shè),,聯(lián)立得:,,,.,,,,面積.令,則,,令,則,,在定義域內(nèi)單調(diào)遞減,.綜上所述:四邊形面積的取值范圍是.【題目點撥】本題考查直線與橢圓的綜合應(yīng)用問題,涉及到橢圓方程的求解、橢圓中的四邊形面積的取值范圍的求解問題;關(guān)鍵是能夠?qū)⑺竺娣e表示為關(guān)于某一變量的函數(shù),將問題轉(zhuǎn)化為函數(shù)值域的求解問題.21、(1),.(2)【解題分析】
(1)根據(jù)直線的參數(shù)方程為(為參數(shù)),消去參數(shù),即可求得的的普通方程,曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:,即可求得答案;(2)的標(biāo)準(zhǔn)方程為,圓心為,半徑為,根據(jù)點到直線距離公式,即可求得答案.【題目詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去參數(shù)的普通方程為.曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:的直角坐標(biāo)方程為.(2)的標(biāo)準(zhǔn)方程為,圓心為,半徑為圓心到的距離為,點到的距離的取值范圍是.【題目點撥】本題解題關(guān)鍵是掌握極坐標(biāo)化直角坐標(biāo)的公式和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.22、(Ⅰ)證明見詳解;(Ⅱ).【解題分析】
(Ⅰ)取中點為,根據(jù)幾何關(guān)系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標(biāo)原點,建立空間直角坐標(biāo)系,求得直線的方向向量和平面的法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2016-學(xué)年高中歷史 第五單元 法國民主力量與專制勢力的斗爭 第2課 拿破侖帝國的建立與封建制度的復(fù)辟教學(xué)設(shè)計 新人教版選修2
- 2024-2025學(xué)年高中政治 第二單元 人民當(dāng)家作主 第五課 我國的根本政治制度 1 人民代表大會:我國的國家權(quán)力機(jī)關(guān)教學(xué)設(shè)計 部編版必修3
- 吉林藝術(shù)學(xué)院《物聯(lián)網(wǎng)原理及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖南農(nóng)業(yè)大學(xué)東方科技學(xué)院《耳鼻咽喉科學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 河南科技大學(xué)《科學(xué)與工程計算方法》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川鐵道職業(yè)學(xué)院《水產(chǎn)微生物學(xué)實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海工藝美術(shù)職業(yè)學(xué)院《文本解讀與訓(xùn)練》2023-2024學(xué)年第一學(xué)期期末試卷
- 發(fā)布前期物業(yè)服務(wù)合同
- 雙方協(xié)議勞動合同
- 內(nèi)墻工程施工合同
- 2022-2023學(xué)年北京市101中學(xué)教育集團(tuán)八年級(下)期中物理試卷含答案解析
- 2023年玻璃幕墻維修合同(三篇)
- 《平移》說課課件
- 初中數(shù)學(xué) 導(dǎo)學(xué)案:正方形
- 邊防支隊綜合指揮平臺可行性研究報告暨初步設(shè)計方案-2
- 2023年微山縣事業(yè)單位招聘考試《公共基礎(chǔ)知識》題庫及答案解析
- 不等式及其解集教學(xué)評課
- 李白的詩酒文化分析研究 漢語言文學(xué)專業(yè)
- GB/T 9271-2008色漆和清漆標(biāo)準(zhǔn)試板
- GB/T 4677-2002印制板測試方法
- GB/T 32434-2015塑料管材和管件燃?xì)夂徒o水輸配系統(tǒng)用聚乙烯(PE)管材及管件的熱熔對接程序
評論
0/150
提交評論