版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省莆田市第二十五中學(xué)2024年數(shù)學(xué)高三上期末統(tǒng)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.2.在中,角的對(duì)邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形3.已知函數(shù),且),則“在上是單調(diào)函數(shù)”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件4.中國(guó)古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.2405.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.986.已知偶函數(shù)在區(qū)間內(nèi)單調(diào)遞減,,,,則,,滿足()A. B. C. D.7.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.9.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.10.函數(shù)的大致圖象是A. B. C. D.11.為雙曲線的左焦點(diǎn),過點(diǎn)的直線與圓交于、兩點(diǎn),(在、之間)與雙曲線在第一象限的交點(diǎn)為,為坐標(biāo)原點(diǎn),若,且,則雙曲線的離心率為()A. B. C. D.12.函數(shù)的圖象大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),滿足約束條件,若的最大值是10,則________.14.已知向量滿足,,則______________.15.的展開式中,項(xiàng)的系數(shù)是__________.16.在中,已知是的中點(diǎn),且,點(diǎn)滿足,則的取值范圍是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若對(duì)任意x0,f(x)0恒成立,求實(shí)數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2(x1x2),證明:.18.(12分)已知,分別是橢圓:的左,右焦點(diǎn),點(diǎn)在橢圓上,且拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn).(1)求,的值:(2)過點(diǎn)作不與軸重合的直線,設(shè)與圓相交于A,B兩點(diǎn),且與橢圓相交于C,D兩點(diǎn),當(dāng)時(shí),求△的面積.19.(12分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前20.(12分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.21.(12分)已知數(shù)列滿足,,其前n項(xiàng)和為.(1)通過計(jì)算,,,猜想并證明數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足,,,若數(shù)列是單調(diào)遞減數(shù)列,求常數(shù)t的取值范圍.22.(10分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過兩點(diǎn),的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點(diǎn),求橢圓的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】
先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出.【題目詳解】∵,∴.故選:A.【題目點(diǎn)撥】本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題.2、C【解題分析】
利用正弦定理將邊化角,再由,化簡(jiǎn)可得,最后分類討論可得;【題目詳解】解:因?yàn)樗运运运运援?dāng)時(shí),為直角三角形;當(dāng)時(shí)即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【題目點(diǎn)撥】本題考查三角形形狀的判斷,考查正弦定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.3、C【解題分析】
先求出復(fù)合函數(shù)在上是單調(diào)函數(shù)的充要條件,再看其和的包含關(guān)系,利用集合間包含關(guān)系與充要條件之間的關(guān)系,判斷正確答案.【題目詳解】,且),由得或,即的定義域?yàn)榛?,(且)令,其在單調(diào)遞減,單調(diào)遞增,在上是單調(diào)函數(shù),其充要條件為即.故選:C.【題目點(diǎn)撥】本題考查了復(fù)合函數(shù)的單調(diào)性的判斷問題,充要條件的判斷,屬于基礎(chǔ)題.4、A【解題分析】
利用間接法求解,首先對(duì)6門課程全排列,減去“樂”排在第一節(jié)的情況,再減去“射”和“御”兩門課程相鄰的情況,最后還需加上“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰的情況;【題目詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當(dāng)“樂”排在第一節(jié)有(種),當(dāng)“射”和“御”兩門課程相鄰時(shí)有(種),當(dāng)“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰時(shí)有(種),則滿足“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰的排法有(種),故選:.【題目點(diǎn)撥】本題考查排列、組合的應(yīng)用,注意“樂”的排列對(duì)“射”和“御”兩門課程相鄰的影響,屬于中檔題.5、C【解題分析】
由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【題目詳解】由題意運(yùn)行程序可得:,,,;,,,;,,,;不成立,此時(shí)輸出.故選:C.【題目點(diǎn)撥】本題考查了程序框圖,只需在理解程序框圖的前提下細(xì)心計(jì)算即可,屬于基礎(chǔ)題.6、D【解題分析】
首先由函數(shù)為偶函數(shù),可得函數(shù)在內(nèi)單調(diào)遞增,再由,即可判定大小【題目詳解】因?yàn)榕己瘮?shù)在減,所以在上增,,,,∴.故選:D【題目點(diǎn)撥】本題考查函數(shù)的奇偶性和單調(diào)性,不同類型的數(shù)比較大小,應(yīng)找一個(gè)中間數(shù),通過它實(shí)現(xiàn)大小關(guān)系的傳遞,屬于中檔題.7、D【解題分析】
先把變形為,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出,得到其坐標(biāo)可得答案.【題目詳解】解:由,得,所以,其在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限故選:D【題目點(diǎn)撥】此題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.8、B【解題分析】
根據(jù)定義域排除,求出的值,可以排除,考慮排除.【題目詳解】根據(jù)函數(shù)圖象得定義域?yàn)?,所以不合題意;選項(xiàng),計(jì)算,不符合函數(shù)圖象;對(duì)于選項(xiàng),與函數(shù)圖象不一致;選項(xiàng)符合函數(shù)圖象特征.故選:B【題目點(diǎn)撥】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見方法為排除法.9、D【解題分析】
“是的充分不必要條件”等價(jià)于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【題目詳解】由題意知:可化簡(jiǎn)為,,所以中變量取值的集合是中變量取值集合的真子集,所以.【題目點(diǎn)撥】利用原命題與其逆否命題的等價(jià)性,對(duì)是的充分不必要條件進(jìn)行命題轉(zhuǎn)換,使問題易于求解.10、A【解題分析】
利用函數(shù)的對(duì)稱性及函數(shù)值的符號(hào)即可作出判斷.【題目詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項(xiàng);當(dāng)時(shí),,可排除D選項(xiàng);當(dāng)時(shí),,當(dāng)時(shí),,即,可排除C選項(xiàng),故選:A【題目點(diǎn)撥】本題考查了函數(shù)圖象的判斷,函數(shù)對(duì)稱性的應(yīng)用,屬于中檔題.11、D【解題分析】
過點(diǎn)作,可得出點(diǎn)為的中點(diǎn),由可求得的值,可計(jì)算出的值,進(jìn)而可得出,結(jié)合可知點(diǎn)為的中點(diǎn),可得出,利用勾股定理求得(為雙曲線的右焦點(diǎn)),再利用雙曲線的定義可求得該雙曲線的離心率的值.【題目詳解】如下圖所示,過點(diǎn)作,設(shè)該雙曲線的右焦點(diǎn)為,連接.,.,,,為的中點(diǎn),,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【題目點(diǎn)撥】本題考查雙曲線離心率的求解,解題時(shí)要充分分析圖形的形狀,考查推理能力與計(jì)算能力,屬于中等題.12、C【解題分析】
根據(jù)函數(shù)奇偶性可排除AB選項(xiàng);結(jié)合特殊值,即可排除D選項(xiàng).【題目詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項(xiàng)A,B;又∵當(dāng)時(shí),,故選:C.【題目點(diǎn)撥】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合即可容易求得結(jié)果.【題目詳解】畫出不等式組表示的平面區(qū)域如下所示:目標(biāo)函數(shù)可轉(zhuǎn)化為與直線平行,數(shù)形結(jié)合可知當(dāng)且僅當(dāng)目標(biāo)函數(shù)過點(diǎn),取得最大值,故可得,解得.故答案為:.【題目點(diǎn)撥】本題考查由目標(biāo)函數(shù)的最值求參數(shù)值,屬基礎(chǔ)題.14、1【解題分析】
首先根據(jù)向量的數(shù)量積的運(yùn)算律求出,再根據(jù)計(jì)算可得;【題目詳解】解:因?yàn)?,所以又所以所以故答案為:【題目點(diǎn)撥】本題考查平面向量的數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.15、240【解題分析】
利用二項(xiàng)式展開式的通項(xiàng)公式,令x的指數(shù)等于3,計(jì)算展開式中含有項(xiàng)的系數(shù)即可.【題目詳解】由題意得:,只需,可得,代回原式可得,故答案:240.【題目點(diǎn)撥】本題主要考查二項(xiàng)式展開式的通項(xiàng)公式及簡(jiǎn)單應(yīng)用,相對(duì)不難.16、【解題分析】
由中點(diǎn)公式的向量形式可得,即有,設(shè),有,再分別討論三點(diǎn)共線和不共線時(shí)的情況,找到的關(guān)系,即可根據(jù)函數(shù)知識(shí)求出范圍.【題目詳解】是的中點(diǎn),∴,即設(shè),于是(1)當(dāng)共線時(shí),因?yàn)?,①若點(diǎn)在之間,則,此時(shí),;②若點(diǎn)在的延長(zhǎng)線上,則,此時(shí),.(2)當(dāng)不共線時(shí),根據(jù)余弦定理可得,解得,由,解得.綜上,故答案為:.【題目點(diǎn)撥】本題主要考查學(xué)中點(diǎn)公式的向量形式和數(shù)量積的定義的應(yīng)用,以及余弦定理的應(yīng)用,涉及到函數(shù)思想和分類討論思想的應(yīng)用,解題關(guān)鍵是建立函數(shù)關(guān)系式,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解題分析】
(1)求出,判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知,.對(duì)分和兩種情況討論,構(gòu)造函數(shù),利用放縮法和基本不等式證明結(jié)論.【題目詳解】(1)由,得.令.當(dāng)時(shí),;當(dāng)時(shí),;在上單調(diào)遞增,在上單調(diào)遞減,.對(duì)任意恒成立,.(2)證明:由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,.若,則,令在上單調(diào)遞增,,.又,在上單調(diào)遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)解決不等式恒成立問題,利用導(dǎo)數(shù)證明不等式,屬于難題.18、(1);(2).【解題分析】
(1)由已知根據(jù)拋物線和橢圓的定義和性質(zhì),可求出,;(2)設(shè)直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡(jiǎn),由根與系數(shù)的關(guān)系得到結(jié)論,繼而求出面積.【題目詳解】(1)焦點(diǎn)為F(1,0),則F1(1,0),F(xiàn)2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設(shè)直線方程為,,聯(lián)立得,易知△>0,則===因?yàn)?,所以?,解得聯(lián)立,得,△=8>0設(shè),則【題目點(diǎn)撥】本題主要考查拋物線和橢圓的定義與性質(zhì)應(yīng)用,同時(shí)考查利用根與系數(shù)的關(guān)系,解決直線與圓,直線與橢圓的位置關(guān)系問題.意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力.19、(1)an=2n【解題分析】
(1)先設(shè)出數(shù)列的公差為d,結(jié)合題中條件,求出首項(xiàng)和公差,即可得出結(jié)果.(2)利用裂項(xiàng)相消法求出數(shù)列的和.【題目詳解】解:(1)設(shè)公差為d的等差數(shù)列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【題目點(diǎn)撥】本題考查的知識(shí)要點(diǎn):數(shù)列的通項(xiàng)公式的求法及應(yīng)用,裂項(xiàng)相消法在數(shù)列求和中的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.20、(Ⅰ)極大值為:,無極小值;(Ⅱ)見解析.【解題分析】
(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可求出函數(shù)的極值;(Ⅱ)得到,根據(jù)函數(shù)的單調(diào)性問題轉(zhuǎn)化為證明,即證,令,根據(jù)函數(shù)的單調(diào)性證明即可.【題目詳解】(Ⅰ)的定義域?yàn)榍伊?,得;令,得在上單調(diào)遞增,在上單調(diào)遞減函數(shù)的極大值為,無極小值(Ⅱ),,即由(Ⅰ)知在上單調(diào)遞增,在上單調(diào)遞減且,則要證,即證,即證,即證即證由于,即,即證令則恒成立在遞增在恒成立【題目點(diǎn)撥】本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,考查不等式的證明,考查運(yùn)算求解能力及化歸與轉(zhuǎn)化思想,關(guān)鍵是能夠構(gòu)造出合適的函數(shù),將問題轉(zhuǎn)化為函數(shù)最值的求解問題,屬于難題.21、(1),證明見解析;(2)【解題分析】
(1)首先利用賦值法求出的值,進(jìn)一步利用定義求出數(shù)列的通項(xiàng)公式;(2)首先利用疊乘法求出數(shù)列的通項(xiàng)公式,進(jìn)一步利用數(shù)列的單調(diào)性和基本不等式的應(yīng)用求出參數(shù)的范圍.【題目詳解】(1)數(shù)列滿足,,其前項(xiàng)和為.所以,,則,,,所以猜想得:.證明:由于,所以,則:(常數(shù)),所以數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列.所以,整理得.(2)數(shù)列滿足,,所以,則,所以.則,所以,所以,整理得,由于,所以,即.【題目點(diǎn)撥】本題考查的知識(shí)要點(diǎn):數(shù)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 代理商團(tuán)隊(duì)建設(shè)方案
- QZT-63型塔吊基礎(chǔ)施工方案
- 2023年臺(tái)州溫嶺市第一人民醫(yī)院招聘醫(yī)學(xué)衛(wèi)生類人才筆試真題
- 2023年內(nèi)江市大學(xué)生鄉(xiāng)村醫(yī)生專項(xiàng)計(jì)劃招聘筆試真題
- 防校園欺凌應(yīng)急預(yù)案
- ICU病情評(píng)估管理制度
- 機(jī)電專業(yè)技術(shù)個(gè)人工作總結(jié)
- 初中語文教師2024年終工作總結(jié)
- 木門廠規(guī)章制度
- 六年級(jí)語文老師發(fā)言稿
- 2024新譯林版三年級(jí)英語上冊(cè)全一冊(cè)全部教案(共34課時(shí))
- 人教版2024-2025學(xué)年七年級(jí)地理上冊(cè) 第一章 地球【單元測(cè)試卷】
- 醫(yī)療保障基金相關(guān)制度、政策培訓(xùn)通知、總結(jié)、簡(jiǎn)報(bào)整改報(bào)告
- 中煤鄂州能源開發(fā)有限公司考試題
- 中央2024年水利部信息中心(水利部水文水資源監(jiān)測(cè)預(yù)報(bào)中心)招聘筆試歷年典型考題及考點(diǎn)附答案解析
- 中國(guó)石油2024招聘【重點(diǎn)基礎(chǔ)提升】模擬試題(共500題)附帶答案詳解
- 幼兒園師幼關(guān)系
- 《園林制圖》課件-基本幾何體的投影
- 投標(biāo)前合作協(xié)議范本
- JT-T-1045-2016道路運(yùn)輸企業(yè)車輛技術(shù)管理規(guī)范
- 2024年國(guó)家公務(wù)員考試時(shí)事政治必考試題庫及答案(歷年真題)
評(píng)論
0/150
提交評(píng)論