安徽省淮北師范大學附中2024屆數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第1頁
安徽省淮北師范大學附中2024屆數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第2頁
安徽省淮北師范大學附中2024屆數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第3頁
安徽省淮北師范大學附中2024屆數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第4頁
安徽省淮北師范大學附中2024屆數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省淮北師范大學附中2024屆數(shù)學高二上期末學業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則()A. B.0C. D.12.如下圖,邊長為2的正方體中,O是正方體的中心,M,N,T分別是棱BC,,的中點,下列說法錯誤的是()A. B.C. D.到平面MON的距離為13.在空間直角坐標系中,點關于平面的對稱點的坐標是()A. B.C. D.4.函數(shù)在上單調遞增,則k的取值范圍是()A B.C. D.5.正三棱柱各棱長均為為棱的中點,則點到平面的距離為()A. B.C. D.16.如圖,在平行六面體中,M為與的交點,若,,,則下列向量中與相等的向量是()A. B.C. D.7.在等差數(shù)列中,,且,,,構成等比數(shù)列,則公差()A.0或2 B.2C.0 D.0或8.若點P在曲線上運動,則點P到直線的距離的最大值為()A. B.2C. D.49.第24屆冬季奧林匹克運動會,將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運史上第一個舉辦過夏季奧林匹克運動會和冬季奧林匹克運動會的城市.根據(jù)安排,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結構鳥瞰圖如圖所示,內外兩圈的鋼骨架是兩個“相似橢圓”(離心率相同的兩個橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長軸一端點A和短軸一端點B分別向內層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.10.如圖,、分別是橢圓的左頂點和上頂點,從橢圓上一點向軸作垂線,垂足為右焦點,且,點到右準線的距離為,則橢圓方程為()A. B.C. D.11.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.12.某中學初中部共有110名教師,高中部共有150名教師,其性別比例如圖所示,則該校男教師的人數(shù)為()A.167 B.137C.123 D.113二、填空題:本題共4小題,每小題5分,共20分。13.已知O為坐標原點,拋物線C:的焦點為F,P為C上一點,PF與x軸垂直,Q為x軸上一點,且,若,則______.14.如圖,某建筑物的高度,一架無人機上的儀器觀測到建筑物頂部的仰角為,地面某處的俯角為,且,則此無人機距離地面的高度為________15.雙曲線的右焦點到C的漸近線的距離為,則C漸近線方程為______16.經(jīng)過點且與雙曲線有公共漸近線的雙曲線方程為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面為正方形,且,點在棱上,且直線與平面所成角的正弦值為(1)求點的位置;(2)求點到平面的距離18.(12分)已知函數(shù),(1)討論的單調性;(2)若時,對任意都有恒成立,求實數(shù)的最大值19.(12分)在平面直角坐標系中,已知直線:(t為參數(shù)).以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為(1)求曲線C的直角坐標方程;(2)設點M的直角坐標為,直線l與曲線C的交點為A,B,求的值20.(12分)如圖,在空間四邊形中,分別是的中點,分別在上,且(1)求證:四點共面;(2)設與交于點,求證:三點共線.21.(12分)已知,(1)當時,求函數(shù)的單調遞減區(qū)間;(2)當時,,求實數(shù)a的取值范圍22.(10分)已知等比數(shù)列{an}中,a1=1,且2a2是a3和4a1的等差中項.數(shù)列{bn}滿足b1=1,b7=13,且bn+2+bn=2bn+1.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列{an+bn}前n項和Tn.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】先求導,再代入求值.詳解】,所以.故選:B2、D【解題分析】建立空間直角坐標系,進而根據(jù)空間向量的坐標運算判斷A,B,C;對D,算出平面MON的法向量,進而求出向量在該法向量方向上投影的絕對值,即為所求距離.【題目詳解】如圖建立空間直角坐標系,則.對A,,則,則A正確;對B,,則,則B正確;對C,,則C正確;對D,設平面MON的法向量為,則,取z=1,得,,所以到平面MON的距離為,則D錯誤.故選:D.3、C【解題分析】根據(jù)空間里面點關于面對稱的性質即可求解.【題目詳解】在空間直角坐標系中,點關于平面的對稱點的坐標是.故選:C.4、A【解題分析】對函數(shù)求導,由于函數(shù)在給定區(qū)間上單調遞增,故恒成立.【題目詳解】由題意可得,,,,.故選:A5、C【解題分析】建立空間直角坐標系,利用點面距公式求得正確答案.【題目詳解】設分別是的中點,根據(jù)正三棱柱的性質可知兩兩垂直,以為原點建立如圖所示空間直角坐標系,,,.設平面的法向量為,則,故可設,所以點到平面的距離為.故選:C6、A【解題分析】利用空間向量的三角形法則可得,結合平行六面體的性質分析解答【題目詳解】平行六面體中,M為與的交點,,,,則有:,所以.故選:A7、A【解題分析】根據(jù)等比中項的性質和等差數(shù)列的通項公式建立方程,可解得公差d得選項.【題目詳解】解:因為在等差數(shù)列中,,且,,,構成等比數(shù)列,所以,即,所以,解得或,故選:A.8、A【解題分析】由方程確定曲線的形狀,然后轉化為求圓上的點到直線距離的最大值【題目詳解】由曲線方程為知曲線關于軸成軸對稱,關于原點成中心對稱圖形,在第一象限內,方程化為,即,在第一象限內,曲線是為圓心,為半徑的圓在第一象限的圓?。ê鴺溯S上的點),實際上整個曲線就是這段圓弧及其關于坐標軸.原點對稱的圖形加上原點,點到直線的距離為,所以所求最大值為故選:A9、C【解題分析】設內層橢圓的方程為,可得外層橢圓的方程為,設切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結合題意求得,進而求得離心率.【題目詳解】設內層橢圓方程為,因為內外層的橢圓的離心率相同,可設外層橢圓的方程為,設切線的方程為,聯(lián)立方程組,整理得,由,整理得,設切線的方程為,同理可得,因為兩切線斜率之積等于,可得,可得,所以離心率為.故選:C.10、A【解題分析】設橢圓方程為,設該橢圓的焦距為,則,求出點的坐標,根據(jù)可得出,可得出,,結合已知條件求得的值,可得出、的值,即可得出橢圓的方程.【題目詳解】設橢圓方程為,設該橢圓的焦距為,則,由圖可知,點第一象限,將代入橢圓方程得,得,所以,點,易知點、,,,因為,則,得,可得,則,點到右準線的距離為為,則,,因此,橢圓的方程為.故選:A.11、B【解題分析】根據(jù)拋物線和寫出焦點坐標,利用題干中的坐標相等,解出,結合從而求出答案.【題目詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.12、C【解題分析】根據(jù)圖形分別求出初中部和高中部男教師的人數(shù),最后相加即可.【題目詳解】初中部男教師的人數(shù)為110×(170%)=33;高中部男教師的人數(shù)為150×60%=90,∴該校男教師的人數(shù)為33+90=123.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、3【解題分析】先求點坐標,再由已知得Q點坐標,由列方程得解.【題目詳解】拋物線:()的焦點,∵P為上一點,與軸垂直,所以P的橫坐標為,代入拋物線方程求得P的縱坐標為,不妨設,因為Q為軸上一點,且,所以Q在F的右側,又,,,因為,所以,,所以3故答案為:3.14、200【解題分析】在Rt△ABC中求得AC的值,△ACQ中由正弦定理求得AQ的值,在Rt△APQ中求得PQ的值【題目詳解】根據(jù)題意,可得Rt△ABC中,∠BAC=60°,BC=300,∴AC200;△ACQ中,∠AQC=45°+15°=60°,∠QAC=180°﹣45°﹣60°=75°,∴∠QCA=180°﹣∠AQC﹣∠QAC=45°,由正弦定理,得,解得AQ200,在Rt△APQ中,PQ=AQsin45°=200200m故答案為200【題目點撥】本題考查了解三角形的應用問題,考查正弦定理,三角形內角和問題,考查轉化化歸能力,是基礎題15、【解題分析】根據(jù)給定條件求出雙曲線漸近線,再用點到直線的距離公式計算作答【題目詳解】雙曲線的漸近線為:,即,依題意,,即,解得,所以C漸近線方程為.故答案為:16、【解題分析】由題意設所求雙曲線的方程為,∵點在雙曲線上,∴,∴所求的雙曲線方程為,即答案:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)為棱中點(2)【解題分析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,其中,利用空間向量法可得出關于的方程,結合求出的值,即可得出點的位置;(2)利用空間向量法可求得點到平面的距離【小問1詳解】解:因為平面,底面為正方形,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則、、、、,設,其中,則,設平面的法向量為,,,由,取,可得,由題意可得,整理可得,因為,解得,因此,點為棱的中點.【小問2詳解】解:由(1)知為棱中點,即,則,又,設平面的法向量為,由,取,可得,因為,所以,點到平面的距離為.18、(1)答案見解析;(2).【解題分析】(1)利用導數(shù)與單調性的關系分類討論即得;(2)由題可得在上恒成立,構造函數(shù),利用導數(shù)求函數(shù)的最值即可.【小問1詳解】的定義域為,且當時,顯然,在定義域上單調遞增;當時,令,得則有:極大值即在上單調遞增,在上單調遞減,綜上所述,當時,在定義域上單調遞增;當時,在上單調遞增,在上單調遞減.【小問2詳解】當時,,對于滿足恒成立,在上恒成立,令,只需∴,,,令,則,在上單調遞增,又,,存在唯一的,使得,即,兩邊取自然對數(shù)得,極小值,則的最大值為19、(1)(2)【解題分析】【小問1詳解】由,得.兩邊同乘,即.由,得曲線的直角坐標方程為【小問2詳解】將代入,得,設A,B對應的參數(shù)分別為則所以.由參數(shù)的幾何意義得20、(1)證明見解析;(2)證明見解析.【解題分析】(1)根據(jù)題意,利用中位線定理和線段成比例,先證明,進而證明問題;(2)先證明平面,平面,進而證明點P在兩個平面的交線上,然后證得結論.【小問1詳解】連接分別是的中點,.在中,.所以四點共面.【小問2詳解】,所以,又平面平面,同理:,平面平面,為平面與平面的一個公共點.又平面平面,即三點共線.21、(1)(2)【解題分析】(1)求出函數(shù)的導函數(shù),再解導函數(shù)的不等式,即可求出函數(shù)的單調遞減區(qū)間;(2)依題意可得當時,當時,顯然成立,當時只需,參變分離得到,令,,利用導數(shù)說明函數(shù)的單調性,即可求出參數(shù)的取值范圍;【小問1詳解】解:當時定義域為,所以,令,解得或,令,解得,所以的單

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論