2024屆海南省等八校高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁(yè)
2024屆海南省等八校高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁(yè)
2024屆海南省等八校高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁(yè)
2024屆海南省等八校高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁(yè)
2024屆海南省等八校高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆海南省等八校高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定義在上的函數(shù)滿足:,且,則的解集為()A. B.C. D.2.已知向量,,且,則的值是()A. B.C. D.3.德國(guó)數(shù)學(xué)家高斯是近代數(shù)學(xué)奠基者之一,有“數(shù)學(xué)王子”之稱,在歷史上有很大的影響.他幼年時(shí)就表現(xiàn)出超人的數(shù)學(xué)天才,10歲時(shí),他在進(jìn)行的求和運(yùn)算時(shí),就提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對(duì)應(yīng)項(xiàng)的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也稱之為高斯算法.已知數(shù)列,則()A.96 B.97C.98 D.994.雙曲線型自然通風(fēng)塔外形是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面,如圖所示,它的最小半徑為米,上口半徑為米,下口半徑為米,高為24米,則該雙曲線的離心率為()A.2 B.C. D.5.點(diǎn)到直線的距離為A.1 B.2C.3 D.46.若方程表示焦點(diǎn)在軸上的雙曲線,則角所在象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限7.設(shè)函數(shù)的導(dǎo)函數(shù)是,若,則()A. B.C. D.8.青花瓷是中華陶瓷燒制工藝的珍品,也是中國(guó)瓷器的主流品種之一.如圖,是一青花瓷花瓶,其外形上下對(duì)稱,可看成是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所形成的曲面.若該花瓶的瓶口直徑為瓶身最小直徑的2倍,花瓶恰好能放入與其等高的正方體包裝箱內(nèi),則雙曲線的離心率為()A. B.C. D.9.已知等比數(shù)列中,,,則該數(shù)列的公比為()A. B.C. D.10.拋物線y2=4x的焦點(diǎn)坐標(biāo)是A.(0,2) B.(0,1)C.(2,0) D.(1,0)11.等差數(shù)列中,,,則()A.1 B.2C.3 D.412.下列說法正確的是()A.空間中的任意三點(diǎn)可以確定一個(gè)平面B.四邊相等的四邊形一定是菱形C.兩條相交直線可以確定一個(gè)平面D.正四棱柱的側(cè)面都是正方形二、填空題:本題共4小題,每小題5分,共20分。13.若直線與曲線沒有公共點(diǎn),則實(shí)數(shù)的取值范圍是____________14.若,,,,與,,,,,,均為等差數(shù)列,則______15.已知數(shù)列{}的通項(xiàng)公式為,前n項(xiàng)和為,當(dāng)取得最小值時(shí),n的值為___________.16.若不等式的解集為,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記是等差數(shù)列的前項(xiàng)和,若.(1)求數(shù)列的通項(xiàng)公式;(2)求使成立的的最小值.18.(12分)已知圓經(jīng)過點(diǎn)和,且圓心在直線上.(1)求圓的方程;(2)過原點(diǎn)的直線與圓交于M,N兩點(diǎn),若的面積為,求直線的方程.19.(12分)已知圓:,過圓外一點(diǎn)作圓的兩條切線,,,為切點(diǎn),設(shè)為圓上的一個(gè)動(dòng)點(diǎn).(1)求的取值范圍;(2)求直線的方程.20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(1)求直線的普通方程,曲線C的直角坐標(biāo)方程;(2)設(shè)直線與曲線C相交于A,B兩點(diǎn),點(diǎn),求的值.21.(12分)已知直線和直線(1)若時(shí),求a的值;(2)當(dāng)平行,求兩直線,的距離22.(10分)已知圓與x軸交于A,B兩點(diǎn),P是該圓上任意一點(diǎn),AP,PB的延長(zhǎng)線分別交直線于M,N兩點(diǎn).(1)若弦AP長(zhǎng)為2,求直線PB的方程;(2)以線段MN為直徑作圓C,當(dāng)圓C面積最小時(shí),求此時(shí)圓C的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】令,利用導(dǎo)數(shù)可判斷其單調(diào)性,從而可解不等式.【題目詳解】設(shè),則,故為上的增函數(shù),而可化為即,故即,所以不等式的解集為,故選:A.2、A【解題分析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【題目詳解】因?yàn)橄蛄?,,所以,,因?yàn)椋?,解得:,故選:A.3、C【解題分析】令,利用倒序相加原理計(jì)算即可得出結(jié)果.【題目詳解】令,,兩式相加得:,∴,故選:C4、A【解題分析】以的中點(diǎn)О為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,設(shè)雙曲線的方程為,設(shè),,代入雙曲線的方程,求得,得到,進(jìn)而求得雙曲線的離心率.【題目詳解】以的中點(diǎn)О為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,則,設(shè)雙曲線的方程為,則,可設(shè),,又由,在雙曲線上,所以,解得,,即,所以該雙曲線的離心率為.故選:A.第II卷5、B【解題分析】直接利用點(diǎn)到直線的距離公式得到答案.【題目詳解】,答案為B【題目點(diǎn)撥】本題考查了點(diǎn)到直線的距離公式,屬于簡(jiǎn)單題.6、D【解題分析】根據(jù)題意得出的符號(hào),進(jìn)而得到的象限.【題目詳解】由題意,,所以在第四象限.故選:D.7、A【解題分析】求導(dǎo)后,令,可求得,再令可求得結(jié)果.【題目詳解】因?yàn)椋?,所以,所以,所以,所?故選:A【題目點(diǎn)撥】本題考查了導(dǎo)數(shù)的計(jì)算,考查了求導(dǎo)函數(shù)值,屬于基礎(chǔ)題.8、C【解題分析】由題意作出軸截面,最短直徑為2a,根據(jù)已知條件點(diǎn)(2a,2a)在雙曲線上,代入雙曲線的標(biāo)準(zhǔn)方程,結(jié)合a,b,c的關(guān)系可求得離心率e的值【題目詳解】由題意作出軸截面如圖:M點(diǎn)是雙曲線與截面正方形的交點(diǎn)之一,設(shè)雙曲線的方程為:最短瓶口直徑為A1A2=2a,則由已知可得M是雙曲線上的點(diǎn),且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化簡(jiǎn)后得,解得故選:C9、C【解題分析】設(shè)等比數(shù)列的公比為,可得出,即可得解.【題目詳解】設(shè)等比數(shù)列的公比為,可得出.故選:C.10、D【解題分析】的焦點(diǎn)坐標(biāo)為,故選D.【考點(diǎn)】拋物線的性質(zhì)【名師點(diǎn)睛】本題考查拋物線的定義.解析幾何是中學(xué)數(shù)學(xué)的一個(gè)重要分支,圓錐曲線是解析幾何的重要內(nèi)容,它們的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單幾何性質(zhì)是我們要重點(diǎn)掌握的內(nèi)容,一定要熟記掌握11、B【解題分析】根據(jù)給定條件利用等差數(shù)列性質(zhì)直接計(jì)算作答.【題目詳解】在等差數(shù)列中,因,,而,于是得,解得,所以.故選:B12、C【解題分析】根據(jù)立體幾何相關(guān)知識(shí)對(duì)各選項(xiàng)進(jìn)行判斷即可.【題目詳解】對(duì)于A,根據(jù)公理2及推論可知,不共線的三點(diǎn)確定一個(gè)平面,故A錯(cuò)誤;對(duì)于B,在一個(gè)平面內(nèi),四邊相等的四邊形才一定是菱形,故B錯(cuò)誤;對(duì)于C,根據(jù)公理2及推論可知,兩條相交直線可以確定一個(gè)平面,故C正確;對(duì)于D,正四棱柱指上、下底面都是正方形且側(cè)棱垂直于底面的棱柱,側(cè)面可以是矩形,故D錯(cuò)誤.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、;【解題分析】可化簡(jiǎn)曲線的方程為,作出其圖形,數(shù)形結(jié)合求臨界值即可求解.【題目詳解】由可得,所以曲線為以為圓心,的下半圓,作出圖形如圖:當(dāng)直線過點(diǎn)時(shí),,可得,當(dāng)直線與半圓相切時(shí),則圓心到直線的距離,可得:或(舍),若直線與曲線沒有公共點(diǎn),由圖知:或,所以實(shí)數(shù)的取值范圍是:,故答案為:14、##【解題分析】由題意利用等差數(shù)列的定義和通項(xiàng)公式,求得要求式子的值【題目詳解】設(shè)等差數(shù)列,,,,的公差為,等差數(shù)列,,,,,,的公差為,則有,且,所以,則,故答案為:15、7【解題分析】首先求出數(shù)列的正負(fù)項(xiàng),再判斷取得最小值時(shí)n的值.【題目詳解】當(dāng),,解得:,當(dāng)和時(shí),,所以取得最小值時(shí),.故答案為:716、11【解題分析】根據(jù)題意得到2與3是方程的兩個(gè)根,再根據(jù)兩根之和與兩根之積求出,進(jìn)而求出答案.【題目詳解】由題意得:2與3是方程的兩個(gè)根,則,,所以.故答案為:11三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)4【解題分析】(1)根據(jù)題意得,解方程得,進(jìn)而得通項(xiàng)公式;(2)由題知,進(jìn)而解不等式得或,再根據(jù)即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為,由得=0,由題意知,,解得,所以d=2所以.小問2詳解】解:由(1)可得,由可得,即,解得或,因?yàn)椋?,正整?shù)的最小值為.18、(1)(2)直線的方程為或或【解題分析】(1)由弦的中垂線與直線的交點(diǎn)為圓心即可求解;(2)由,可得或,進(jìn)而有或,顯然直線斜率存在,設(shè)直線,由點(diǎn)到直線的距離公式求出的值即可得答案.【小問1詳解】解:設(shè)弦的中點(diǎn)為,則有,因?yàn)?,所以直線,所以直線的中垂線為,則圓心在直線上,且在直線上,聯(lián)立方程解得圓心,則圓的半徑為,所以圓方程為;【小問2詳解】解:設(shè)圓心到直線的距離為,因?yàn)?,所以或,所以或,顯然直線斜率存在,所以設(shè)直線,則或,解得或或,故直線的方程為或或.19、(1)(2)【解題分析】(1)求出PM,就可以求PQ的范圍;(2)使用待定系數(shù)法求出切線的方程,再求求切點(diǎn)的坐標(biāo),從而可以求切點(diǎn)的連線的方程.【小問1詳解】如下圖所示,因?yàn)閳A的方程可化為,所以圓心,半徑,且,所以,故取值范圍為.【小問2詳解】可知切線,中至少一條的斜率存在,設(shè)為,則此切線為即,由圓心到此切線的距離等于半徑,即,得所以兩條切線的方程為和,于是由聯(lián)立方程組得兩切點(diǎn)的坐標(biāo)為和所以故直線的方程為即20、(1)直線的普通方程為;曲線C的直角坐標(biāo)方程為(2)【解題分析】(1)根據(jù)轉(zhuǎn)換關(guān)系將參數(shù)方程和極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程即可;(2)將直線的參數(shù)方程化為標(biāo)準(zhǔn)形式,代入曲線C的直角坐標(biāo)方程,設(shè)點(diǎn)A,B對(duì)應(yīng)的參數(shù)分別為,利用韋達(dá)定理即可得出答案.【小問1詳解】解:將直線的參數(shù)方程中的參數(shù)消去得,則直線的普通方程為,由曲線C的極坐標(biāo)方程為,得,即,由得曲線C的直角坐標(biāo)方程為;【小問2詳解】解:點(diǎn)滿足,故點(diǎn)在直線上,將直線的參數(shù)方程化為標(biāo)準(zhǔn)形式(為參數(shù)),代入曲線C的直角坐標(biāo)方程為,得,設(shè)點(diǎn)A,B對(duì)應(yīng)的參數(shù)分別為,則,所以.21、(1)(2)【解題分析】(1)由垂直可得兩直線系數(shù)關(guān)系,即可得關(guān)于實(shí)數(shù)a的方程.(2)由平行可得兩直線系數(shù)關(guān)系,即可得關(guān)于實(shí)數(shù)a的方程,進(jìn)而可求出兩直線的方程,結(jié)合直線的距離公式即可求出直線與之間的距離.【小問1詳解】∵,且,∴,解得【小問2詳解】∵,,且,∴且,解得,∴,即∴直線間的距離為22、(1)或;(2).【解題分析】(1)根據(jù)圓的直徑的性質(zhì),結(jié)合銳角三角函數(shù)定義進(jìn)行求解即可;(2)根據(jù)題意,結(jié)合基本不等式和圓的標(biāo)準(zhǔn)方程進(jìn)行求解即可.【小問1詳解】在方程中,令,解得,或,因?yàn)锳P,PB的延長(zhǎng)線分別交直線于M,N兩點(diǎn),所以,圓心在x軸上,所以,因?yàn)?,,所以有,?dāng)P在x軸上方時(shí),直線PB的斜率為:,所以

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論