平面向量數(shù)量積的物理背景及其含義說(shuō)課稿(楊振遠(yuǎn))_第1頁(yè)
平面向量數(shù)量積的物理背景及其含義說(shuō)課稿(楊振遠(yuǎn))_第2頁(yè)
平面向量數(shù)量積的物理背景及其含義說(shuō)課稿(楊振遠(yuǎn))_第3頁(yè)
平面向量數(shù)量積的物理背景及其含義說(shuō)課稿(楊振遠(yuǎn))_第4頁(yè)
平面向量數(shù)量積的物理背景及其含義說(shuō)課稿(楊振遠(yuǎn))_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

“平面向量數(shù)量積的物理背景及其含義”說(shuō)課稿平江一中:楊振遠(yuǎn)說(shuō)課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教A版)《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時(shí)---平面向量數(shù)量積的物理背景及其含義。下面,我從背景分析、教學(xué)目標(biāo)設(shè)計(jì)、課堂結(jié)構(gòu)設(shè)計(jì)、教學(xué)過(guò)程設(shè)計(jì)、教學(xué)媒體設(shè)計(jì)及教學(xué)評(píng)價(jià)設(shè)計(jì)六個(gè)方面對(duì)本節(jié)課的思考進(jìn)行說(shuō)明。一、 背景分析1、 學(xué)習(xí)任務(wù)分析平面向量的數(shù)量積是繼向量的線性運(yùn)算之后的又一重要運(yùn)算,也是高中數(shù)學(xué)的一個(gè)重要概念,在數(shù)學(xué)、物理等學(xué)科中應(yīng)用十分廣泛。本節(jié)內(nèi)容教材共安排兩課時(shí),其中第一課時(shí)主要研究數(shù)量積的概念,第二課時(shí)主要研究數(shù)量積的坐標(biāo)運(yùn)算,本節(jié)課是第一課時(shí)。本節(jié)課的主要學(xué)習(xí)任務(wù)是通過(guò)物理中“功”的事例抽象出平面向量數(shù)量積的概念,在此基礎(chǔ)上探究數(shù)量積的性質(zhì)與運(yùn)算律,使學(xué)生體會(huì)類(lèi)比的思想方法,進(jìn)一步培養(yǎng)學(xué)生的抽象概括和推理論證的能力。其中數(shù)量積的概念既是對(duì)物理背景的抽象,又是研究性質(zhì)和運(yùn)算律的基礎(chǔ)。同時(shí)也因?yàn)樵谶@個(gè)概念中,既有長(zhǎng)度又有角度,既有形又有數(shù),是代數(shù)、幾何與三角的最佳結(jié)合點(diǎn),不僅應(yīng)用廣泛,而且很好的體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,使得數(shù)量積的概念成為本節(jié)課的核心概念,自然也是本節(jié)課教學(xué)的重點(diǎn)。2、 學(xué)生情況分析學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容之前,已熟知了實(shí)數(shù)的運(yùn)算體系,掌握了向量的概念及其線性運(yùn)算,具備了功等物理知識(shí),并且初步體會(huì)了研究向量運(yùn)算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再?gòu)母拍畛霭l(fā),在與實(shí)數(shù)運(yùn)算類(lèi)比的基礎(chǔ)上研究性質(zhì)和運(yùn)算律。這為學(xué)生學(xué)習(xí)數(shù)量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對(duì)數(shù)量積概念的理解,一方面,相對(duì)于線性運(yùn)算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,兩個(gè)有形有數(shù)的向量經(jīng)過(guò)數(shù)量積運(yùn)算后,形卻消失了,學(xué)生對(duì)這一點(diǎn)是很難接受的;另一方面,由于受實(shí)數(shù)乘法運(yùn)算的影響,也會(huì)造成學(xué)生對(duì)數(shù)量積理解上的偏差,特別是對(duì)性質(zhì)和運(yùn)算律的理解。因而本節(jié)課教學(xué)的難點(diǎn)數(shù)量積的概念。二、 教學(xué)目標(biāo)設(shè)計(jì)《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》對(duì)本節(jié)課的要求有以下三條:(1)通過(guò)物理中“功”等事例,理解平面向量數(shù)量積的含義及其物理意義。(2)體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系。(3)能用運(yùn)數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系。從以上的背景分析可以看出,數(shù)量積的概念既是本節(jié)課的重點(diǎn),也是難點(diǎn)。為了突破這一難點(diǎn),首先無(wú)論是在概念的引入還是應(yīng)用過(guò)程中,物理中“功”的實(shí)例都發(fā)揮了重要作用。其次,作為數(shù)量積概念延伸的性質(zhì)和運(yùn)算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時(shí)也是進(jìn)行相關(guān)計(jì)算和判斷的理論依據(jù)。最后,無(wú)論是數(shù)量積的性質(zhì)還是運(yùn)算律,都希望學(xué)生在類(lèi)比的基礎(chǔ)上,通過(guò)主動(dòng)探究來(lái)發(fā)現(xiàn),因而對(duì)培養(yǎng)學(xué)生的抽象概括能力、推理論證能力和類(lèi)比思想都無(wú)疑是很好的載體。綜上所述,結(jié)合“課標(biāo)”要求和學(xué)生實(shí)際,我將本節(jié)課的教學(xué)目標(biāo)定為:1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;2、體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的性質(zhì)和運(yùn)算律,并能運(yùn)用性質(zhì)和運(yùn)算律進(jìn)行相關(guān)的運(yùn)算和判斷;

3、體會(huì)類(lèi)比的數(shù)學(xué)思想和方法,進(jìn)一步培養(yǎng)學(xué)生抽象概括、推理論證的能力。三、課堂結(jié)構(gòu)設(shè)計(jì)本節(jié)課從總體上講是一節(jié)概念教學(xué),依據(jù)數(shù)學(xué)課程改革應(yīng)關(guān)注知識(shí)的發(fā)生和發(fā)展過(guò)程的理念,結(jié)合本節(jié)課的知識(shí)的邏輯關(guān)系,我按照以下順序安排本節(jié)課的教學(xué):回顧向量的線的線性T

抽象閃念探迥性質(zhì)援究薩算律應(yīng)箱概念 ?”T

抽象閃念探迥性質(zhì)援究薩算律應(yīng)箱概念淀義義分 *幾何、物理意義探究性質(zhì) ?<I證明性質(zhì) j探究運(yùn)算律i證明運(yùn)算律 例題與練習(xí)小施升即先從數(shù)學(xué)和物理兩個(gè)角度創(chuàng)設(shè)問(wèn)題情景,通過(guò)歸納和抽象得到數(shù)量積的概念,在此基礎(chǔ)上研究數(shù)量積的性質(zhì)和運(yùn)算律,使學(xué)生進(jìn)一步加深對(duì)概念的理解,然后通過(guò)例題和練習(xí)使學(xué)生鞏固概念,加深印象,最后通過(guò)課堂小結(jié)提高學(xué)生認(rèn)識(shí),形成知識(shí)體系。

四、 教學(xué)媒體設(shè)計(jì)和“大綱”教材相比,“課標(biāo)”教材在本節(jié)課的內(nèi)容安排上,雖然將向量的夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來(lái)分兩節(jié)課完成的內(nèi)容合并成一節(jié),相比較而言本節(jié)課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),考慮到本節(jié)課的實(shí)際特點(diǎn),在教學(xué)媒體的使用上,我的設(shè)想主要有以下兩點(diǎn):1、制作高效實(shí)用的電腦多媒體課件,主要作用是改變相關(guān)內(nèi)容的呈現(xiàn)方式,以此來(lái)節(jié)約課時(shí),增加課堂容量。2、設(shè)計(jì)科學(xué)合理的板書(shū)(見(jiàn)下),一方面使學(xué)生加深對(duì)主要知識(shí)的印象,另一方面使學(xué)生清楚本節(jié)內(nèi)容知識(shí)間的邏輯關(guān)系,形成知識(shí)網(wǎng)絡(luò)。平面向量數(shù)量積的物理背景及其含義、數(shù)量積的概念質(zhì)四、應(yīng)用與提高二、數(shù)量積的性1、、數(shù)量積的概念質(zhì)四、應(yīng)用與提高二、數(shù)量積的性1、概念:例1:2、2、概念強(qiáng)調(diào)(1)記法例2:3、幾何意義:(23、幾何意義:(2)“規(guī)定例3:三、數(shù)量積的運(yùn)算4、物理意義:五、 教學(xué)過(guò)程設(shè)計(jì)課標(biāo)指出:數(shù)學(xué)教學(xué)過(guò)程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動(dòng)的過(guò)程,是教師和學(xué)生間互動(dòng)的過(guò)程,是師生共同發(fā)展的過(guò)程。為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排以下六個(gè)活動(dòng):活動(dòng)一:創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)習(xí)興趣正如教材主編寄語(yǔ)所言,數(shù)學(xué)是自然的,而不是強(qiáng)加于人的。平面向量的數(shù)量積這一重要概念,和向量的線性運(yùn)算一樣,也有其數(shù)學(xué)背景和物理背景,為了體現(xiàn)這一點(diǎn),我設(shè)計(jì)以下幾個(gè)問(wèn)題:?jiǎn)栴}1:我們已經(jīng)研究了向量的哪些運(yùn)算?這些運(yùn)算的結(jié)果是什么?問(wèn)題2:我們是怎么引入向量的加法運(yùn)算的?我們又是按照怎樣的順序研究了這種運(yùn)算的?期望學(xué)生回答:物理模型f概念f性質(zhì)f運(yùn)算律f應(yīng)用問(wèn)題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,(2)請(qǐng)同學(xué)們分析這個(gè)公式的特點(diǎn):W(功)是_量,F(xiàn)(力)是 量,S(位移)是 量,問(wèn)題1的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的數(shù)學(xué)背景,讓學(xué)生明白本節(jié)課所要研究的數(shù)量積與向量的加法、減法及數(shù)乘一樣,都是向量的運(yùn)算,但與向量的線性運(yùn)算相比,數(shù)量積運(yùn)算又有其特殊性,那就是其結(jié)果發(fā)生了本質(zhì)的變化。問(wèn)題2的設(shè)計(jì)意圖在于使學(xué)生在與向量加法類(lèi)比的基礎(chǔ)上明了本節(jié)課的研究方法和順序,為教學(xué)活動(dòng)指明方向。問(wèn)題3的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的物理背景,讓學(xué)生知道,我們研究數(shù)量積絕不僅僅是為了數(shù)學(xué)自身的完善,而是有其客觀背景和現(xiàn)實(shí)意義的,從而產(chǎn)生了進(jìn)一步研究這種新運(yùn)算的愿望。同時(shí),也為抽象數(shù)量積的概念做好鋪墊?;顒?dòng)二:探究數(shù)量積的概念1、概念的抽象在分析“功”的計(jì)算公式的基礎(chǔ)上提出問(wèn)題4問(wèn)題4:你能用文字語(yǔ)言來(lái)表述功的計(jì)算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結(jié)果又該如何表述?學(xué)生通過(guò)思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個(gè)向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實(shí)上已經(jīng)得到數(shù)量積概念的文字表述了,在此基礎(chǔ)上,我進(jìn)一步明晰數(shù)量積的概念。2、概念的明晰已知兩個(gè)非零向量盤(pán)與b,它們的夾角為4,我們把數(shù)量2丨?弋Icos?叫做總與b的數(shù)量積(或內(nèi)積),記作:總?b卩:尬?=在強(qiáng)調(diào)記法和“規(guī)定”后,為了讓學(xué)生進(jìn)一步認(rèn)識(shí)這一概念,提出問(wèn)題5問(wèn)題5:向量的數(shù)量積運(yùn)算與線性運(yùn)算的結(jié)果有什么不同?影響數(shù)量積大小的因素有哪些?并完成下表:角①的范圍0?!?<90°◎=90°0°〈氐<180°茂?的符號(hào)通過(guò)此環(huán)節(jié)不僅使學(xué)生認(rèn)識(shí)到數(shù)量積的結(jié)果與線性運(yùn)算的結(jié)果有著本質(zhì)的不同,而且認(rèn)識(shí)到向量的夾角是決定數(shù)量積結(jié)果的重要因素,為下面更好地理解數(shù)量積的性質(zhì)和運(yùn)算律做好鋪墊。3、探究數(shù)量積的幾何意義這個(gè)問(wèn)題教材是這樣安排的:在給出向量數(shù)量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運(yùn)算律的第三條才直接以結(jié)論的形式呈現(xiàn)給學(xué)生,我覺(jué)得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調(diào)整。為此,我首先給出給出向量投影的概念,然后提出問(wèn)題5?!猺 —ne —r—nr —^r—r如圖,我們把"Icose(?ICOS?)叫做向量鳥(niǎo)在總方向上9在占方向上)的投影,記做:OB]二IZIcos^問(wèn)題6:數(shù)量積的幾何意義是什么?這樣做不僅讓學(xué)生從“形”的角度重新認(rèn)識(shí)數(shù)量積的概念,從中體會(huì)數(shù)量積與向量投影的關(guān)系,同時(shí)也更符合知識(shí)的連貫性,而且也節(jié)約了課時(shí)?;顒?dòng)三:探究數(shù)量積的運(yùn)算性質(zhì)1、性質(zhì)的發(fā)現(xiàn)教材中關(guān)于數(shù)量積的三條性質(zhì)是以探究的形式出現(xiàn)的,為了很好地完成這一探究活動(dòng),在完成上述練習(xí)后,我不失時(shí)機(jī)地提出問(wèn)題8:將嘗試練習(xí)中的①②③的結(jié)論推廣到一般向量,你能得到哪些結(jié)論?—r —r -nr比較丨尬?占丨與丨尬丨乂丨心丨的大小,你有什么結(jié)論?在學(xué)生討論交流的基礎(chǔ)上,教師進(jìn)一步明晰數(shù)量積的性質(zhì),然后再由學(xué)生利用數(shù)量積的定義給予證明,完成探究活動(dòng)。2、明晰數(shù)量積的性質(zhì)

數(shù)量積的性質(zhì)設(shè)匚和血都是非零向量,則u住丄3劇??3=o-r—r -r—r _r _r —r_r2、當(dāng)總與占同向時(shí),|總■占|=|尬| |止I;當(dāng)尬與止反向時(shí),—r—r —r —r —r —r —r —r IL -|lj?&| |a |\b \,特別地,a ~a=\ a |!^|? |=Va-3-r—r -r —r'、\a~b\^\a\x\b\3、性質(zhì)的證明這樣設(shè)計(jì)體現(xiàn)了教師只是教學(xué)活動(dòng)的引領(lǐng)者,而學(xué)生才是學(xué)習(xí)活動(dòng)的主體,讓學(xué)生成為學(xué)習(xí)的研究者,不斷地體驗(yàn)到成功的喜悅,激發(fā)學(xué)生參與學(xué)習(xí)活動(dòng)的熱情,不僅使學(xué)生獲得了知識(shí),更培養(yǎng)了學(xué)生由特殊到一般的思維品質(zhì)?;顒?dòng)四:探究數(shù)量積的運(yùn)算律1、運(yùn)算律的發(fā)現(xiàn)關(guān)于運(yùn)算律,教材仍然是以探究的形式出現(xiàn),為此,首先提出問(wèn)題9問(wèn)題9:我們學(xué)過(guò)了實(shí)數(shù)乘法的哪些運(yùn)算律?這些運(yùn)算律對(duì)向量是否也適用?通過(guò)此問(wèn)題主要是想使學(xué)生在類(lèi)比的基礎(chǔ)上,猜測(cè)提出數(shù)量積的運(yùn)算律。學(xué)生可能會(huì)提出以下猜測(cè):①°(占?c) ③(農(nóng)+占)?c=a?c+b ?c猜測(cè)①的正確性是顯而易見(jiàn)的。關(guān)于猜測(cè)②的正確性,我提示學(xué)生思考下面的問(wèn)題:猜測(cè)②的左右兩邊的結(jié)果各是什么?它們一定相等嗎?學(xué)生通過(guò)討論不難發(fā)現(xiàn),猜測(cè)②是不正確的。這時(shí)教師在肯定猜測(cè)③的基礎(chǔ)上明晰數(shù)量積的運(yùn)算律:2、明晰數(shù)量積的運(yùn)算律數(shù)量積的運(yùn)算律已知向量JC和實(shí)數(shù)―貝U:TOC\o"1-5"\h\z-r —r _r —r _r —r -r —r _r —r(1)a?h=h-a(2)(Xa)?b=\(a-b)=a-(Xi)-r —r - —r - _r -(3)(a +占)? c=a -c +b ?c3、證明運(yùn)算律學(xué)生獨(dú)立證明運(yùn)算律(2)我把運(yùn)算運(yùn)算律(2)的證明交給學(xué)生完成,在證明時(shí),學(xué)生可能只考慮到入>0的情況,為了幫助學(xué)生完善證明,提出以下問(wèn)題:當(dāng)入<0時(shí),向量總與入尬,心與入心的方向的關(guān)系如何?此時(shí),向量入住與b及住與入b的夾角與向量住與占的夾角相等嗎?師生共同證明運(yùn)算律(3)運(yùn)算律(3)的證明對(duì)學(xué)生來(lái)說(shuō)是比較困難的,為了節(jié)約課時(shí),這個(gè)證明由師生共同完成,我想這也是教材的本意。在這個(gè)環(huán)節(jié)中,我仍然是首先為學(xué)生創(chuàng)設(shè)情景,讓學(xué)生在類(lèi)比的基礎(chǔ)上進(jìn)行猜想歸納,然后教師明晰結(jié)論,最后再完成證明,這樣做不僅培養(yǎng)了學(xué)生推理論證的能力,同時(shí)也增強(qiáng)了學(xué)生類(lèi)比創(chuàng)新的意識(shí),將知識(shí)的獲得和能力的培養(yǎng)有機(jī)的結(jié)合在一起?;顒?dòng)五:應(yīng)用與提高例—:已知|a1=5.|b|=4.a與b的夾角為120°,求a?b, (a)21解a-b=\aI-1b丨cosl20。=5x4x(--)=-10a2=\a\2二52二25練習(xí):已知在△ABC中,a=8,b=7,ZC=60°,求BC?CA例二.判斷正誤,并簡(jiǎn)要說(shuō)明理由.a-0=0;0?a=0;對(duì)任意向量a,b,c都有(a-b)-c=a-(b-c)若a-b=0,貝Ua=0或b=0若a-b=a-c則b=c?X②X?X④X⑤X例三.已知a|=6.|b|=4,當(dāng)a與b的夾角是60°時(shí),求(a+2b)-(a-3b),(a+b)2,\a+b\讓學(xué)生獨(dú)立完成,當(dāng)學(xué)生在求\a+b\時(shí)遇到困難時(shí),引導(dǎo)學(xué)生注意(a+b)2與\a+b\之間的關(guān)系:\a+b\=(a+b)2 ??????解:(a+2b)-(a—3b)=a2—a-b—6b2=\a\2-\a\-\b\-cos0—6\b\2

1=62一6x4x—6x42 =-722(a+b)2二a2+2a-b+b2=|a|2+21aI-1bI-cos0+IbI21=1=62+2x6x4x+42=76Ia+bI=(a+b)2=、:76=2\:19例四:已知Ia|=3,|b|=4,且a與b不共線,k為何值時(shí),向量a+kb與a-kb互相垂直?分析:a+kb與a-kb垂直,即證(a+kb)?(a-kb)=0解:若向量a+kb與a-kb互相垂直貝U(a+kb)?(a-kb)=0—> ?a2-k2b2=0 ?/a2二9,b2二163.k=+-4本節(jié)教材共安排了四道例題,我根據(jù)學(xué)生實(shí)際選擇了其中的三道,并對(duì)例1和例3增加了題后反思。例1是數(shù)量積的性質(zhì)和運(yùn)算律的綜合應(yīng)用,教學(xué)時(shí),我重點(diǎn)從對(duì)運(yùn)算原理的分析和運(yùn)算過(guò)程的規(guī)范書(shū)寫(xiě)兩個(gè)方面加強(qiáng)示范。完成計(jì)算后,進(jìn)一步提出問(wèn)題:此運(yùn)算過(guò)程類(lèi)似于哪種運(yùn)算?目的是想讓學(xué)生在類(lèi)比多項(xiàng)式乘法的基礎(chǔ)上自己猜測(cè)提出例2給出的兩個(gè)公式,再由學(xué)生獨(dú)立完成證明,一方面這并不困難,另一方面培養(yǎng)了學(xué)生通過(guò)類(lèi)比這一思維模式達(dá)到創(chuàng)新的目的。例3的主要作用是,在繼續(xù)鞏固性質(zhì)和運(yùn)算律的同時(shí),教給學(xué)生如何利用數(shù)量積來(lái)判斷兩個(gè)向量的垂直,是平面向量數(shù)量積的基本應(yīng)用之一,教學(xué)時(shí)重點(diǎn)給學(xué)生分析數(shù)與形的轉(zhuǎn)化原理?;顒?dòng)六:小結(jié)提升與作業(yè)布置1、本節(jié)課我們學(xué)習(xí)的主要內(nèi)容是什么?2、平面向量數(shù)量積的兩個(gè)基本應(yīng)用是什么?3、我們是按照怎樣的思維模式進(jìn)行

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論