版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省瀘州天立國際學校2023年初三第二學期學生月考測試卷(2.22)數(shù)學試題試卷含附加題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,一場暴雨過后,垂直于地面的一棵樹在距地面1米處折斷,樹尖B恰好碰到地面,經(jīng)測量AB=2m,則樹高為()米A. B. C.+1 D.32.在剛剛結(jié)束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數(shù)是9 B.眾數(shù)為16 C.平均分為7.78 D.方差為23.如圖,AB是⊙O的直徑,點C,D,E在⊙O上,若∠AED=20°,則∠BCD的度數(shù)為()A.100° B.110° C.115° D.120°4.如圖,PA、PB切⊙O于A、B兩點,AC是⊙O的直徑,∠P=40°,則∠ACB度數(shù)是()A.50° B.60° C.70° D.80°5.計算(﹣ab2)3的結(jié)果是()A.﹣3ab2 B.a(chǎn)3b6 C.﹣a3b5 D.﹣a3b66.如圖,在?ABCD中,AB=2,BC=1.以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是()A. B.1 C. D.7.如圖,正比例函數(shù)y=x與反比例函數(shù)y=4x的圖象交于A(2,2)、B(﹣2,﹣2)兩點,當y=x的函數(shù)值大于A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>28.已知關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,下列判斷正確的是()A.1一定不是關于x的方程x2+bx+a=0的根B.0一定不是關于x的方程x2+bx+a=0的根C.1和﹣1都是關于x的方程x2+bx+a=0的根D.1和﹣1不都是關于x的方程x2+bx+a=0的根9.已知一元二次方程的兩個實數(shù)根分別是x1、x2則x12x2x1x22的值為()A.-6 B.-3 C.3 D.610.下列四張正方形硬紙片,剪去陰影部分后,如果沿虛線折疊,可以圍成一個封閉的長方體包裝盒的是()A. B. C. D.11.下列判斷錯誤的是()A.兩組對邊分別相等的四邊形是平行四邊形 B.四個內(nèi)角都相等的四邊形是矩形C.兩條對角線垂直且平分的四邊形是正方形 D.四條邊都相等的四邊形是菱形12.如圖所示的圖形為四位同學畫的數(shù)軸,其中正確的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知等腰直角三角形ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰直角三角形ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰直角三角形ADE……依此類推,直到第五個等腰直角三角形AFG,則由這五個等腰直角三角形所構成的圖形的面積為__________.14.哈爾濱市某樓盤以每平方米10000元的均價對外銷售,經(jīng)過連續(xù)兩次上調(diào)后,均價為每平方米12100元,則平均每次上調(diào)的百分率為_____.15.一個長方體的三視圖如圖所示,若其俯視圖為正方形,則這個長方體的體積為______.16.已知一個正六邊形的邊心距為,則它的半徑為______.17.一個正多邊形的一個外角為30°,則它的內(nèi)角和為_____.18.若式子有意義,則x的取值范圍是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.求每臺A型電腦和B型電腦的銷售利潤;該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.①求y關于x的函數(shù)關系式;②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?實際進貨時,廠家對A型電腦出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.20.(6分)計算:(1)﹣12018+|﹣2|+2cos30°;(2)(a+1)2+(1﹣a)(a+1);21.(6分)某海域有A、B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達位于B港口南偏東75°方向的C處,求:(1)∠C=°;(2)此時刻船與B港口之間的距離CB的長(結(jié)果保留根號).22.(8分)如圖1,在正方形ABCD中,E是邊BC的中點,F(xiàn)是CD上一點,已知∠AEF=90°.(1)求證:;(2)平行四邊形ABCD中,E是邊BC上一點,F(xiàn)是邊CD上一點,∠AFE=∠ADC,∠AEF=90°.①如圖2,若∠AFE=45°,求的值;②如圖3,若AB=BC,EC=3CF,直接寫出cos∠AFE的值.23.(8分)某市扶貧辦在精準扶貧工作中,組織30輛汽車裝運花椒、核桃、甘藍向外地銷售.按計劃30輛車都要裝運,每輛汽車只能裝運同一種產(chǎn)品,且必須裝滿,根據(jù)下表提供的信息,解答以下問題:產(chǎn)品名稱核桃花椒甘藍每輛汽車運載量(噸)1064每噸土特產(chǎn)利潤(萬元)0.70.80.5若裝運核桃的汽車為x輛,裝運甘藍的車輛數(shù)是裝運核桃車輛數(shù)的2倍多1,假設30輛車裝運的三種產(chǎn)品的總利潤為y萬元.(1)求y與x之間的函數(shù)關系式;(2)若裝花椒的汽車不超過8輛,求總利潤最大時,裝運各種產(chǎn)品的車輛數(shù)及總利潤最大值.24.(10分)某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:命中環(huán)數(shù)678910甲命中相應環(huán)數(shù)的次數(shù)01310乙命中相應環(huán)數(shù)的次數(shù)20021(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);
(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?
(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變?。ㄌ睢白兇蟆薄ⅰ白冃 被颉安蛔儭保?5.(10分)某新建成學校舉行美化綠化校園活動,九年級計劃購買A,B兩種花木共100棵綠化操場,其中A花木每棵50元,B花木每棵100元.(1)若購進A,B兩種花木剛好用去8000元,則購買了A,B兩種花木各多少棵?(2)如果購買B花木的數(shù)量不少于A花木的數(shù)量,請設計一種購買方案使所需總費用最低,并求出該購買方案所需總費用.26.(12分)撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:本次抽樣調(diào)查共抽取了多少名學生?求測試結(jié)果為C等級的學生數(shù),并補全條形圖;若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結(jié)果為D等級的學生有多少名?若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.27.(12分)某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若購進A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進A品牌的化妝品3套,B品牌的化妝品2套,需要450元.(1)求A、B兩種品牌的化妝品每套進價分別為多少元?(2)若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元;根據(jù)市場需求,店老板決定購進這兩種品牌化妝品共50套,且進貨價錢不超過4000元,應如何選擇進貨方案,才能使賣出全部化妝品后獲得最大利潤,最大利潤是多少?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】由題意可知,AC=1,AB=2,∠CAB=90°據(jù)勾股定理則BC=m;∴AC+BC=(1+)m.答:樹高為(1+)米.故選C.2、A【解析】
根據(jù)中位數(shù),眾數(shù),平均數(shù),方差等知識即可判斷;【詳解】觀察圖象可知,共有50個學生,從低到高排列后,中位數(shù)是25位與26位的平均數(shù),即為1.故選A.【點睛】本題考查中位數(shù),眾數(shù),平均數(shù),方差的定義,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.3、B【解析】
連接AD,BD,由圓周角定理可得∠ABD=20°,∠ADB=90°,從而可求得∠BAD=70°,再由圓的內(nèi)接四邊形對角互補得到∠BCD=110°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=20°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故選B【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內(nèi)接四邊形的性質(zhì)是關鍵.4、C【解析】
連接BC,根據(jù)題意PA,PB是圓的切線以及可得的度數(shù),然后根據(jù),可得的度數(shù),因為是圓的直徑,所以,根據(jù)三角形內(nèi)角和即可求出的度數(shù)?!驹斀狻窟B接BC.∵PA,PB是圓的切線∴在四邊形中,∵∴∵所以∵是直徑∴∴故答案選C.【點睛】本題主要考察切線的性質(zhì),四邊形和三角形的內(nèi)角和以及圓周角定理。5、D【解析】
根據(jù)積的乘方與冪的乘方計算可得.【詳解】解:(﹣ab2)3=﹣a3b6,故選D.【點睛】本題主要考查冪的乘方與積的乘方,解題的關鍵是掌握積的乘方與冪的乘方的運算法則.6、B【解析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.7、D【解析】試題分析:觀察函數(shù)圖象得到當﹣2<x<0或x>2時,正比例函數(shù)圖象都在反比例函數(shù)圖象上方,即有y=x的函數(shù)值大于y=4考點:1.反比例函數(shù)與一次函數(shù)的交點問題;2.數(shù)形結(jié)合思想的應用.8、D【解析】
根據(jù)方程有兩個相等的實數(shù)根可得出b=a+1或b=-(a+1),當b=a+1時,-1是方程x2+bx+a=0的根;當b=-(a+1)時,1是方程x2+bx+a=0的根.再結(jié)合a+1≠-(a+1),可得出1和-1不都是關于x的方程x2+bx+a=0的根.【詳解】∵關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,∴,∴b=a+1或b=-(a+1).當b=a+1時,有a-b+1=0,此時-1是方程x2+bx+a=0的根;當b=-(a+1)時,有a+b+1=0,此時1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是關于x的方程x2+bx+a=0的根.故選D.【點睛】本題考查了根的判別式以及一元二次方程的定義,牢記“當△=0時,方程有兩個相等的實數(shù)根”是解題的關鍵.9、B【解析】
根據(jù)根與系數(shù)的關系得到x1+x2=1,x1?x2=﹣1,再把x12x2+x1x22變形為x1?x2(x1+x2),然后利用整體代入的方法計算即可.【詳解】根據(jù)題意得:x1+x2=1,x1?x2=﹣1,所以原式=x1?x2(x1+x2)=﹣1×1=-1.故選B.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系:若方程兩個為x1,x2,則x1+x2,x1?x2.10、C【解析】A、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;B、剪去陰影部分后,無法組成長方體,故此選項不合題意;C、剪去陰影部分后,能組成長方體,故此選項正確;D、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;故選C.11、C【解析】
根據(jù)平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,對選項進行判斷即可【詳解】解:A、兩組對邊分別相等的四邊形是平行四邊形,故本選項正確;B、四個內(nèi)角都相等的四邊形是矩形,故本選項正確;C、兩條對角線垂直且平分的四邊形是菱形,不一定是正方形,故本選項錯誤;D、四條邊都相等的四邊形是菱形,故本選項正確.故選C【點睛】此題綜合考查了平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,熟練掌握判定法則才是解題關鍵12、D【解析】
根據(jù)數(shù)軸三要素:原點、正方向、單位長度進行判斷.【詳解】A選項圖中無原點,故錯誤;B選項圖中單位長度不統(tǒng)一,故錯誤;C選項圖中無正方向,故錯誤;D選項圖形包含數(shù)軸三要素,故正確;故選D.【點睛】本題考查數(shù)軸的畫法,熟記數(shù)軸三要素是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、12.2【解析】
∵△ABC是邊長為1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n個等腰直角三角形的面積是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由這五個等腰直角三角形所構成的圖形的面積為+1+1+4+8=12.2.故答案為12.2.14、10%【解析】
設平均每次上調(diào)的百分率是x,因為經(jīng)過兩次上調(diào),且知道調(diào)前的價格和調(diào)后的價格,從而列方程求出解.【詳解】設平均每次上調(diào)的百分率是x,依題意得,解得:,(不合題意,舍去).答:平均每次上調(diào)的百分率為10%.故答案是:10%.【點睛】此題考查了一元二次方程的應用.解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程,再求解.15、1.【解析】試題解析:設俯視圖的正方形的邊長為.∵其俯視圖為正方形,從主視圖可以看出,正方形的對角線長為∴解得∴這個長方體的體積為4×3=1.16、2【解析】試題分析:設正六邊形的中心是O,一邊是AB,過O作OG⊥AB與G,在直角△OAG中,根據(jù)三角函數(shù)即可求得OA.解:如圖所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案為2.點睛:本題主要考查正多邊形和圓的關系.解題的關鍵在于利用正多邊形的半徑、邊心距構造直角三角形并利用解直角三角形的知識求解.17、1800°【解析】試題分析:這個正多邊形的邊數(shù)為=12,所以這個正多邊形的內(nèi)角和為(12﹣2)×180°=1800°.故答案為1800°.考點:多邊形內(nèi)角與外角.18、且【解析】
∵式子在實數(shù)范圍內(nèi)有意義,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案為x≥-1且x≠0.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)每臺A型100元,每臺B150元;(2)34臺A型和66臺B型;(3)70臺A型電腦和30臺B型電腦的銷售利潤最大【解析】
(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據(jù)題意列出方程組求解,(2)①據(jù)題意得,y=﹣50x+15000,②利用不等式求出x的范圍,又因為y=﹣50x+15000是減函數(shù),所以x取34,y取最大值,(3)據(jù)題意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三種情況討論,①當0<m<50時,y隨x的增大而減小,②m=50時,m﹣50=0,y=15000,③當50<m<100時,m﹣50>0,y隨x的增大而增大,分別進行求解.【詳解】解:(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據(jù)題意得解得答:每臺A型電腦銷售利潤為100元,每臺B型電腦的銷售利潤為150元.(2)①據(jù)題意得,y=100x+150(100﹣x),即y=﹣50x+15000,②據(jù)題意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y隨x的增大而減小,∵x為正整數(shù),∴當x=34時,y取最大值,則100﹣x=66,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.(3)據(jù)題意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①當0<m<50時,y隨x的增大而減小,∴當x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②m=50時,m﹣50=0,y=15000,即商店購進A型電腦數(shù)量滿足33≤x≤70的整數(shù)時,均獲得最大利潤;③當50<m<100時,m﹣50>0,y隨x的增大而增大,∴當x=70時,y取得最大值.即商店購進70臺A型電腦和30臺B型電腦的銷售利潤最大.【點睛】本題主要考查了一次函數(shù)的應用,二元一次方程組及一元一次不等式的應用,解題的關鍵是根據(jù)一次函數(shù)x值的增大而確定y值的增減情況.20、(1)1;(2)2a+2【解析】
(1)根據(jù)特殊角銳角三角函數(shù)值、絕對值的性質(zhì)即可求出答案;(2)先化簡原式,然后將x的值代入原式即可求出答案.【詳解】解:(1)原式=﹣1+2﹣+2×=1;(2)原式=a2+2a+1+1﹣a2=2a+2.【點睛】本題考查學生的運算能力,解題的關鍵是熟練運用運算法則,本題屬于基礎題型.21、(1)60;(2)【解析】(1)由平行線的性質(zhì)以及方向角的定義得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根據(jù)方向角的定義得出∠BAC=∠BAE+∠CAE=75°,利用三角形內(nèi)角和定理求出∠C=60°;(2)作AD⊥BC交BC于點D,解Rt△ABD,得出BD=AD=30,解Rt△ACD,得出CD=10,根據(jù)BC=BD+CD即可求解.解:(1)如圖所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABC=45°,∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.故答案為60;(2)如圖,作AD⊥BC于D,在Rt△ABD中,∵∠ABD=45°,AB=60,∴AD=BD=30.在Rt△ACD中,∵∠C=60°,AD=30,∴tanC=,∴CD==10,∴BC=BD+CD=30+10.答:該船與B港口之間的距離CB的長為(30+10)海里.22、(1)見解析;(2)①;②cos∠AFE=【解析】
(1)用特殊值法,設,則,證,可求出CF,DF的長,即可求出結(jié)論;(2)①如圖2,過F作交AD于點G,證和是等腰直角三角形,證,求出的值,即可寫出的值;②如圖3,作交AD于點T,作于H,證,設CF=2,則CE=6,可設AT=x,則TF=3x,,,分別用含x的代數(shù)式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出結(jié)論.【詳解】(1)設BE=EC=2,則AB=BC=4,∵,∴,∵,∴∠FEC=∠EAB,又∴,∴,∴,即,∴CF=1,則,∴;(2)①如圖2,過F作交AD于點G,∵,∴和是等腰直角三角形,∴,,∴∠AGF=∠C,又∵,∴∠GAF=∠CFE,∴,∴,又∵GF=DF,∴;②如圖3,作交AD于點T,作于H,則,∴,∴∠ATF=∠C,又∵,且∠D=∠AFE,∴∠TAF=∠CFE,∴,∴,設CF=2,則CE=6,可設AT=x,則TF=3x,,∴,且,由,得,解得x=5,∴.【點睛】本題主要考查了三角形相似的判定及性質(zhì)的綜合應用,熟練掌握三角形相似的判定及性質(zhì)是解決本題的關鍵.23、(1)y=﹣3.4x+141.1;(1)當裝運核桃的汽車為2輛、裝運甘藍的汽車為12輛、裝運花椒的汽車為1輛時,總利潤最大,最大利潤為117.4萬元.【解析】
(1)根據(jù)題意可以得裝運甘藍的汽車為(1x+1)輛,裝運花椒的汽車為30﹣x﹣(1x+1)=(12﹣3x)輛,從而可以得到y(tǒng)與x的函數(shù)關系式;(1)根據(jù)裝花椒的汽車不超過8輛,可以求得x的取值范圍,從而可以得到y(tǒng)的最大值,從而可以得到總利潤最大時,裝運各種產(chǎn)品的車輛數(shù).【詳解】(1)若裝運核桃的汽車為x輛,則裝運甘藍的汽車為(1x+1)輛,裝運花椒的汽車為30﹣x﹣(1x+1)=(12﹣3x)輛,根據(jù)題意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x)=﹣3.4x+141.1.(1)根據(jù)題意得:,解得:7≤x≤,∵x為整數(shù),∴7≤x≤2.∵10.6>0,∴y隨x增大而減小,∴當x=7時,y取最大值,最大值=﹣3.4×7+141.1=117.4,此時:1x+1=12,12﹣3x=1.答:當裝運核桃的汽車為2輛、裝運甘藍的汽車為12輛、裝運花椒的汽車為1輛時,總利潤最大,最大利潤為117.4萬元.【點睛】本題考查了一次函數(shù)的應用,解題的關鍵是熟練的掌握一次函數(shù)的應用.24、(1)8,6和9;(2)甲的成績比較穩(wěn)定;(3)變小【解析】
(1)根據(jù)眾數(shù)、中位數(shù)的定義求解即可;
(2)根據(jù)平均數(shù)的定義先求出甲和乙的平均數(shù),再根據(jù)方差公式求出甲和乙的方差,然后進行比較,即可得出答案;
(3)根據(jù)方差公式進行求解即可.【詳解】解:(1)把甲命中環(huán)數(shù)從小到大排列為7,8,8,8,9,最中間的數(shù)是8,則中位數(shù)是8;
在乙命中環(huán)數(shù)中,6和9都出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則乙命中環(huán)數(shù)的眾數(shù)是6和9;
故答案為8,6和9;
(2)甲的平均數(shù)是:(7+8+8+8+9)÷5=8,
則甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,
乙的平均數(shù)是:(6+6+9+9+10)÷5=8,
則甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,
所以甲的成績比較穩(wěn)定;
(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差變小.
故答案為變?。军c睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差通常用s2來表示,計算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了算術平均數(shù)、中位數(shù)和眾數(shù).25、(1)購買A種花木40棵,B種花木60棵;(2)當購買A種花木50棵、B種花木50棵時,所需總費用最低,最低費用為7500元.【解析】
(1)設購買A種花木x棵,B種花木y棵,根據(jù)“A,B兩種花木共100棵、購進A,B兩種花木剛好用去8000元”列方程組求解可得;(2)設購買A種花木a棵,則購買B種花木(100﹣a)棵,根據(jù)“B花木的數(shù)量不少于A花木的數(shù)量”求得a的范圍,再設購買總費用為W,列出W關于a的解析式,利用一次函數(shù)的性質(zhì)求解可得.【詳解】解析:(1)設購買A種花木x棵,B種花木y棵,根據(jù)題意,得:,解得:,答:購買A種花木40棵,B種花木60棵;(2)設購買A種花木a棵,則購買B種花木(100﹣a)棵,根據(jù)題意,得:100﹣a≥a,解得:a≤50,設購買總費用為W,則W=50a+100(100﹣a)=﹣50a+10000,∵W隨a的增大而減小,∴當a=50時,W取得最小值,最小值為7500元,答:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度柳州離婚協(xié)議書樣本3篇
- 三年級數(shù)學100以內(nèi)整數(shù)除法計算題競賽試題訓練題大全附答案
- 2024年碎石開采與智能化加工一體化項目承包合同3篇
- 2025版紙箱廠客戶服務與售后維修合同2篇
- 2025年度園林綠化工程施工現(xiàn)場防火責任協(xié)議書3篇
- 二零二五年度原材料市場分析及采購合同范本2篇
- 2024年度生態(tài)宜居商品房買賣合同GF-01713篇
- 2024年砼建筑抹灰專業(yè)分包協(xié)議樣本版
- 2025版包裝箱設計專利授權許可合同3篇
- 二零二五年度辦公室改造項目能耗評估合同3篇
- 高級管理招聘面試題與參考回答2024年
- 國際合作項目風險管理
- 臨床5A護理模式
- 第一單元《認識物聯(lián)網(wǎng)》第1課 互聯(lián)網(wǎng)和物聯(lián)網(wǎng) 教案 2023-2024學年浙教版(2023)初中信息技術七年級下冊
- 潔柔形象升級與整合內(nèi)容營銷方案
- 仿真綠植安裝施工方案
- 2024年四川省南充市從“五方面人員”中選拔鄉(xiāng)鎮(zhèn)領導班子成員201人歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 各類學校校園安全應急預案匯編-(附應急全套流程圖)
- 送養(yǎng)協(xié)議書范本范本
- 吸入療法在呼吸康復應用中的中國專家共識2022版
- 信息科技課程標準測(2022版)考試題庫及答案
評論
0/150
提交評論