版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是由若干個大小相同的小正方體堆砌而成的幾何體,那么其三種視圖中面積最小的是()A.主視圖 B.俯視圖 C.左視圖 D.一樣大2.-的立方根是()A.-8 B.-4 C.-2 D.不存在3.cos60°的值等于()A.1 B. C. D.4.若一元二次方程x2﹣2x+m=0有兩個不相同的實數根,則實數m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<15.下列關于x的方程中一定沒有實數根的是()A. B. C. D.6.如圖,在?ABCD中,AB=2,BC=1.以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是()A. B.1 C. D.7.世界因愛而美好,在今年我校的“獻愛心”捐款活動中,九年級三班50名學生積極加獻愛心捐款活動,班長將捐款情況進行了統(tǒng)計,并繪制成了統(tǒng)計圖,根據圖中提供的信息,捐款金額的眾數和中位數分別是A.20、20 B.30、20 C.30、30 D.20、308.下列4個數:,,π,()0,其中無理數是()A. B. C.π D.()09.的平方根是()A.2 B. C.±2 D.±10.下列計算錯誤的是()A.a?a=a2 B.2a+a=3a C.(a3)2=a5 D.a3÷a﹣1=a411.如圖,直線、及木條在同一平面上,將木條繞點旋轉到與直線平行時,其最小旋轉角為().A. B. C. D.12.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若⊙O的半徑r=5,AC=53,則∠B的度數是(
)A.30°B.45°C.50°D.60°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,邊長為4的正方形ABCD內接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認為正確結論的序號都填上)14.如圖,量角器的0度刻度線為,將一矩形直尺與量角器部分重疊,使直尺一邊與量角器相切于點,直尺另一邊交量角器于點,,量得,點在量角器上的讀數為,則該直尺的寬度為____________.15.如圖,以原點O為圓心的圓交X軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內⊙O上的一點,若∠DAB=20°,則∠OCD=.16.下面是甲、乙兩人10次射擊成績(環(huán)數)的條形統(tǒng)計圖,通常新手的成績不太確定,根據圖中的信息,估計這兩人中的新手是_____.17.若不等式組的解集是﹣1<x≤1,則a=_____,b=_____.18.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結論的個數是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知三角形ABC的邊AB是0的切線,切點為B.AC經過圓心0并與圓相交于點D,C,過C作直線CE丄AB,交AB的延長線于點E,(1)求證:CB平分∠ACE;(2)若BE=3,CE=4,求O的半徑.20.(6分)(1)計算:(2)先化簡,再求值:,其中x是不等式的負整數解.21.(6分)如圖,AB為⊙O的直徑,D為⊙O上一點,以AD為斜邊作△ADC,使∠C=90°,∠CAD=∠DAB求證:DC是⊙O的切線;若AB=9,AD=6,求DC的長.22.(8分)一天,小華和小夏玩擲骰子游戲,他們約定:他們用同一枚質地均勻的骰子各擲一次,如果兩次擲的骰子的點數相同則小華獲勝:如果兩次擲的骰子的點數的和是6則小夏獲勝.(1)請您列表或畫樹狀圖列舉出所有可能出現的結果;(2)請你判斷這個游戲對他們是否公平并說明理由.23.(8分)如圖1,在平面直角坐標系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點A(1,0)和點D(﹣4,5),并與y軸交于點C,拋物線的對稱軸為直線x=﹣1,且拋物線與x軸交于另一點B.(1)求該拋物線的函數表達式;(2)若點E是直線下方拋物線上的一個動點,求出△ACE面積的最大值;(3)如圖2,若點M是直線x=﹣1的一點,點N在拋物線上,以點A,D,M,N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點M的坐標;若不能,請說明理由.24.(10分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線交CB的延長線于點E,交AC于點F.(1)求證:點F是AC的中點;(2)若∠A=30°,AF=,求圖中陰影部分的面積.25.(10分)(定義)如圖1,A,B為直線l同側的兩點,過點A作直線1的對稱點A′,連接A′B交直線l于點P,連接AP,則稱點P為點A,B關于直線l的“等角點”.(運用)如圖2,在平面直坐標系xOy中,已知A(2,3),B(﹣2,﹣3)兩點.(1)C(4,32),D(4,22),E(4,12(2)若直線l垂直于x軸,點P(m,n)是點A,B關于直線l的等角點,其中m>2,∠APB=α,求證:tanα2=n(3)若點P是點A,B關于直線y=ax+b(a≠0)的等角點,且點P位于直線AB的右下方,當∠APB=60°時,求b的取值范圍(直接寫出結果).26.(12分)拋物線:與軸交于,兩點(點在點左側),拋物線的頂點為.(1)拋物線的對稱軸是直線________;(2)當時,求拋物線的函數表達式;(3)在(2)的條件下,直線:經過拋物線的頂點,直線與拋物線有兩個公共點,它們的橫坐標分別記為,,直線與直線的交點的橫坐標記為,若當時,總有,請結合函數的圖象,直接寫出的取值范圍.27.(12分)“十九大”報告提出了我國將加大治理環(huán)境污染的力度,還我青山綠水,其中霧霾天氣讓環(huán)保和健康問題成為焦點,為了調查學生對霧霾天氣知識的了解程度,某校在全校學生中抽取400名同學做了一次調查,根據調查統(tǒng)計結果,繪制了不完整的一種統(tǒng)計圖表.對霧霾了解程度的統(tǒng)計表對霧霾的了解程度百分比A.非常了解5%B.比較了解mC.基本了解45%D.不了解n請結合統(tǒng)計圖表,回答下列問題:統(tǒng)計表中:m=,n=;請在圖1中補全條形統(tǒng)計圖;請問在圖2所示的扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是多少度?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】如圖,該幾何體主視圖是由5個小正方形組成,左視圖是由3個小正方形組成,俯視圖是由5個小正方形組成,故三種視圖面積最小的是左視圖,故選C.2、C【解析】分析:首先求出的值,然后根據立方根的計算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點睛:本題主要考查的是算術平方根與立方根,屬于基礎題型.理解算術平方根與立方根的含義是解決本題的關鍵.3、A【解析】
根據特殊角的三角函數值直接得出結果.【詳解】解:cos60°=故選A.【點睛】識記特殊角的三角函數值是解題的關鍵.4、D【解析】分析:根據方程的系數結合根的判別式△>0,即可得出關于m的一元一次不等式,解之即可得出實數m的取值范圍.詳解:∵方程有兩個不相同的實數根,∴解得:m<1.故選D.點睛:本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數根”是解題的關鍵.5、B【解析】
根據根的判別式的概念,求出△的正負即可解題.【詳解】解:A.x2-x-1=0,△=1+4=50,∴原方程有兩個不相等的實數根,B.,△=36-144=-1080,∴原方程沒有實數根,C.,,△=10,∴原方程有兩個不相等的實數根,D.,△=m2+80,∴原方程有兩個不相等的實數根,故選B.【點睛】本題考查了根的判別式,屬于簡單題,熟悉根的判別式的概念是解題關鍵.6、B【解析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.7、C【解析】分析:由表提供的信息可知,一組數據的眾數是這組數中出現次數最多的數,而中位數則是將這組數據從小到大(或從大到?。┮来闻帕袝r,處在最中間位置的數,據此可知這組數據的眾數,中位數.詳解:根據右圖提供的信息,捐款金額的眾數和中位數分別是30,30.故選C.點睛:考查眾數和中位數的概念,熟記概念是解題的關鍵.8、C【解析】=3,是無限循環(huán)小數,π是無限不循環(huán)小數,,所以π是無理數,故選C.9、D【解析】
先化簡,然后再根據平方根的定義求解即可.【詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【點睛】本題考查了平方根的定義以及算術平方根,先把正確化簡是解題的關鍵,本題比較容易出錯.10、C【解析】
解:A、a?a=a2,正確,不合題意;B、2a+a=3a,正確,不合題意;C、(a3)2=a6,故此選項錯誤,符合題意;D、a3÷a﹣1=a4,正確,不合題意;故選C.【點睛】本題考查冪的乘方與積的乘方;合并同類項;同底數冪的乘法;負整數指數冪.11、B【解析】
如圖所示,過O點作a的平行線d,根據平行線的性質得到∠2=∠3,進而求出將木條c繞點O旋轉到與直線a平行時的最小旋轉角.【詳解】如圖所示,過O點作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點與直線d重合時,與直線a平行,旋轉角∠1+∠2=90°.故選B【點睛】本題主要考查圖形的旋轉與平行線,解題的關鍵是熟練掌握平行線的性質.12、D【解析】根據圓周角定理的推論,得∠B=∠D.根據直徑所對的圓周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.則sinD=AC∠D=60°∠B=∠D=60°.故選D.“點睛”此題綜合運用了圓周角定理的推論以及銳角三角函數的定義,解答時要找準直角三角形的對應邊.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、①②④【解析】
①根據ASA可證△BOE≌△COF,根據全等三角形的性質得到BE=CF,根據等弦對等弧得到,可以判斷①;
②根據SAS可證△BOG≌△COH,根據全等三角形的性質得到∠GOH=90°,OG=OH,根據等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
④根據△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設BG=x,則BH=4-x,根據勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,,
∴△BOE≌△COF,
∴BE=CF,
∴,①正確;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正確.③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設BG=x,則BH=4-x,
則GH==,
∴其最小值為4+2,④正確.
故答案為:①②④【點睛】考查了圓的綜合題,關鍵是熟練掌握全等三角形的判定和性質,等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強.14、【解析】
連接OC,OD,OC與AD交于點E,根據圓周角定理有根據垂徑定理有:解直角即可.【詳解】連接OC,OD,OC與AD交于點E,直尺的寬度:故答案為【點睛】考查垂徑定理,熟記垂徑定理是解題的關鍵.15、65°【解析】
解:由題意分析之,得出弧BD對應的圓周角是∠DAB,所以,=40°,由此則有:∠OCD=65°考點:本題考查了圓周角和圓心角的關系點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要對圓心角、弧、弦等的基本性質要熟練把握16、甲.【解析】
根據方差的意義可作出判斷.方差是用來衡量一組數據波動大小的量,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩(wěn)定,方差越大,數據不穩(wěn)定,則為新手.【詳解】∵通過觀察條形統(tǒng)計圖可知:乙的成績更整齊,也相對更穩(wěn)定,∴甲的方差大于乙的方差.故答案為:甲.【點睛】本題考查的知識點是方差,條形統(tǒng)計圖,解題的關鍵是熟練的掌握方差,條形統(tǒng)計圖.17、-2-3【解析】
先求出每個不等式的解集,再求出不等式組的解集,即可得出關于a、b的方程,求出即可.【詳解】解:由題意得:解不等式①得:x>1+a,解不等式②得:x≤不等式組的解集為:1+a<x≤不等式組的解集是﹣1<x≤1,..1+a=-1,=1,解得:a=-2,b=-3故答案為:-2,-3.【點睛】本題主要考查解含參數的不等式組.18、①②③④.【解析】
由正方形的性質得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;
證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;
由等腰直角三角形的性質和矩形的性質得出∠ABC=∠ABF=45°,③正確;
證出△ACD∽△FEQ,得出對應邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,,
∴△FGA≌△ACD(AAS),
∴AC=FG,①正確;
∵BC=AC,
∴FG=BC,
∵∠ACB=90°,FG⊥CA,
∴FG∥BC,
∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;
∵CA=CB,∠C=∠CBF=90°,
∴∠ABC=∠ABF=45°,③正確;
∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ,
∴AC:AD=FE:FQ,
∴AD?FE=AD2=FQ?AC,④正確;
故答案為①②③④.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質、正方形的性質、矩形的判定與性質、等腰直角三角形的性質;熟練掌握正方形的性質,證明三角形全等和三角形相似是解決問題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2).【解析】試題分析:(1)證明:如圖1,連接OB,由AB是⊙0的切線,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根據等腰三角形的性質得到∠1=∠2,通過等量代換得到結果.(2)如圖2,連接BD通過△DBC∽△CBE,得到比例式,列方程可得結果.(1)證明:如圖1,連接OB,∵AB是⊙0的切線,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如圖2,連接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直徑,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD?CE,∴CD==,∴OC==,∴⊙O的半徑=.考點:切線的性質.20、(1)5;(2),3.【解析】試題分析:(1)原式先計算乘方運算,再計算乘運算,最后算加減運算即可得到結果;(2)先化簡,再求得x的值,代入計算即可.試題解析:(1)原式=1-2+1×2+4=5;(2)原式=×=,當3x+7>1,即x>-2時的負整數時,(x=-1)時,原式==3..21、(1)見解析;(2)【解析】分析:(1)如下圖,連接OD,由OA=OD可得∠DAO=∠ADO,結合∠CAD=∠DAB,可得∠CAD=∠ADO,從而可得OD∥AC,由此可得∠C+∠CDO=180°,結合∠C=90°可得∠CDO=90°即可證得CD是⊙O的切線;(2)如下圖,連接BD,由AB是⊙O的直徑可得∠ADB=90°=∠C,結合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的長了.詳解:(1)如下圖,連接OD.∵OA=OD,∴∠DAB=∠ODA,∵∠CAD=∠DAB,∴∠ODA=∠CAD∴AC∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD⊥CD,∴CD是⊙O的切線.(2)如下圖,連接BD,∵AB是⊙O的直徑,∴∠ADB=90°,∵AB=9,AD=6,∴BD===3,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴,∴,∴CD=.點睛:這是一道考查“圓和直線的位置關系與相似三角形的判定和性質”的幾何綜合題,作出如圖所示的輔助線,熟悉“圓的切線的判定方法”和“相似三角形的判定和性質”是正確解答本題的關鍵.22、(1)36(2)不公平【解析】
(1)根據題意列表即可;(2)根據根據表格可以求得得分情況,比較其大小,即可得出結論.【詳解】(1)列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36種等可能的結果,(2)這個游戲對他們不公平,理由:由上表可知,所有可能的結果有36種,并且它們出現的可能性相等,而P(兩次擲的骰子的點數相同)P(兩次擲的骰子的點數的和是6)=∴不公平.【點睛】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.23、(1)y=x2+2x﹣3;(2);(3)詳見解析.【解析】試題分析:(1)先利用拋物線的對稱性確定出點B的坐標,然后設拋物線的解析式為y=a(x+3)(x-1),將點D的坐標代入求得a的值即可;(2)過點E作EF∥y軸,交AD與點F,過點C作CH⊥EF,垂足為H.設點E(m,m2+2m-3),則F(m,-m+1),則EF=-m2-3m+4,然后依據△ACE的面積=△EFA的面積-△EFC的面積列出三角形的面積與m的函數關系式,然后利用二次函數的性質求得△ACE的最大值即可;(3)當AD為平行四邊形的對角線時.設點M的坐標為(-1,a),點N的坐標為(x,y),利用平行四邊形對角線互相平分的性質可求得x的值,然后將x=-2代入求得對應的y值,然后依據=,可求得a的值;當AD為平行四邊形的邊時.設點M的坐標為(-1,a).則點N的坐標為(-6,a+5)或(4,a-5),將點N的坐標代入拋物線的解析式可求得a的值.試題解析:(1)∴A(1,0),拋物線的對稱軸為直線x=-1,∴B(-3,0),設拋物線的表達式為y=a(x+3)(x-1),將點D(-4,5)代入,得5a=5,解得a=1,∴拋物線的表達式為y=x2+2x-3;(2)過點E作EF∥y軸,交AD與點F,交x軸于點G,過點C作CH⊥EF,垂足為H.設點E(m,m2+2m-3),則F(m,-m+1).∴EF=-m+1-m2-2m+3=-m2-3m+4.∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=-(m+)2+.∴△ACE的面積的最大值為;(3)當AD為平行四邊形的對角線時:設點M的坐標為(-1,a),點N的坐標為(x,y).∴平行四邊形的對角線互相平分,∴=,=,解得x=-2,y=5-a,將點N的坐標代入拋物線的表達式,得5-a=-3,解得a=8,∴點M的坐標為(-1,8),當AD為平行四邊形的邊時:設點M的坐標為(-1,a),則點N的坐標為(-6,a+5)或(4,a-5),∴將x=-6,y=a+5代入拋物線的表達式,得a+5=36-12-3,解得a=16,∴M(-1,16),將x=4,y=a-5代入拋物線的表達式,得a-5=16+8-3,解得a=26,∴M(-1,26),綜上所述,當點M的坐標為(-1,26)或(-1,16)或(-1,8)時,以點A,D,M,N為頂點的四邊形能成為平行四邊形.24、(1)見解析;(2)【解析】
(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線,則根據切線長定理得到FD=FC,然后證明∠3=∠A得到FD=FA,從而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三邊的關系得到BC=AC=2,再證明△OBD為等邊三角形得到∠BOD=60°,接著根據切線的性質得到OD⊥EF,從而可計算出DE的長,然后根據扇形的面積公式,利用S陰影部分=S△ODE-S扇形BOD進行計算即可.【詳解】(1)證明:連接OD、CD,如圖,∵BC為直徑,∴∠BDC=90°,∵∠ACB=90°,∴AC為⊙O的切線,∵EF為⊙O的切線,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴點F是AC中點;(2)解:在Rt△ACB中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2,∵OB=OD,∴△OBD為等邊三角形,∴∠BOD=60°,∵EF為切線,∴OD⊥EF,在Rt△ODE中,DE=OD=,∴S陰影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.25、(1)C(2)n2(3)b<﹣735且b≠﹣2【解析】
(1)先求出B關于直線x=4的對稱點B′的坐標,根據A、B′的坐標可得直線AB′的解析式,把x=4代入求出P點的縱坐標即可得答案;(2)如圖:過點A作直線l的對稱點A′,連A′B′,交直線l于點P,作BH⊥l于點H,根據對稱性可知∠APG=A′PG,由∠AGP=∠BHP=90°可證明△AGP∽△BHP,根據相似三角形對應邊成比例可得m=2根據外角性質可知∠A=∠A′=α2根據對稱性質可證明△ABQ是等邊三角形,即點Q為定點,若直線y=ax+b(a≠0)與圓相切,易得P、Q重合,所以直線y=ax+b(a≠0)過定點Q,連OQ,過點A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N,可證明△AMO∽△ONQ,根據相似三角形對應邊成比例可得ON、NQ的長,即可得Q點坐標,根據A、B、Q的坐標可求出直線AQ、BQ的解析式,根據P與A、B重合時b的值求出b的取值范圍即可.【詳解】(1)點B關于直線x=4的對稱點為B′(10,﹣3),∴直線AB′解析式為:y=﹣34當x=4時,y=32故答案為:C(2)如圖,過點A作直線l的對稱點A′,連A′B′,交直線l于點P作BH⊥l于點H∵點A和A′關于直線l對稱∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴AGBH=GP∴mn=23,即m=23∵∠APB=α,AP=AP′,∴∠A=∠A′=α2在Rt△AGP中,tanα2=(3)如圖,當點P位于直線AB的右下方,∠APB=60°時,點P在以AB為弦,所對圓周為60°,且圓心在AB下方若直線y=ax+b(a≠0)與圓相交,設圓與直線y=ax+b(a≠0)的另一個交點為Q由對稱性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等邊三角形∵線段AB為定線段∴點Q為定點若直線y=ax+b(a≠0)與圓相切,易得P、Q重合∴直線y=ax+b(a≠0)過定點Q連OQ,過點A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N∵A(2,3),B(﹣2,﹣3)∴OA=OB=7∵△ABQ是等邊三角形∴∠AOQ=∠BOQ=90°,OQ=3OB=∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球七葉神安片行業(yè)調研及趨勢分析報告
- 2025-2030全球醫(yī)療器械消毒產品行業(yè)調研及趨勢分析報告
- 2025年全球及中國缺氧帳篷行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國有機空穴傳輸材料行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球連續(xù)式鋰電池熱解爐行業(yè)調研及趨勢分析報告
- 競業(yè)限制合同協(xié)議書
- 家具房屋租賃合同書
- 2025危險廢物委托處置合同
- 房地產借款合同
- 提高談判技巧的訓練課程
- 國有資產管理法律責任與風險防控
- 未婚生子的分手協(xié)議書
- 變更監(jiān)事章程修正案范例
- 北京小客車指標租賃協(xié)議五篇
- 輸液室運用PDCA降低靜脈輸液患者外滲的發(fā)生率品管圈(QCC)活動成果
- YY/T 0681.2-2010無菌醫(yī)療器械包裝試驗方法第2部分:軟性屏障材料的密封強度
- GB/T 20472-2006硫鋁酸鹽水泥
- 煙氣管道阻力計算
- 城鄉(xiāng)環(huán)衛(wèi)一體化保潔服務迎接重大節(jié)日、活動的保障措施
- 醫(yī)院-9S管理共88張課件
- 高考作文復習:議論文論證方法課件15張
評論
0/150
提交評論