江蘇省海安市八校2023屆中考五模數(shù)學(xué)試題含解析_第1頁
江蘇省海安市八校2023屆中考五模數(shù)學(xué)試題含解析_第2頁
江蘇省海安市八校2023屆中考五模數(shù)學(xué)試題含解析_第3頁
江蘇省海安市八校2023屆中考五模數(shù)學(xué)試題含解析_第4頁
江蘇省海安市八校2023屆中考五模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠CDE的大小是()A.40° B.43° C.46° D.54°2.下列說法正確的是()A.﹣3是相反數(shù) B.3與﹣3互為相反數(shù)C.3與互為相反數(shù) D.3與﹣互為相反數(shù)3.化簡(﹣a2)?a5所得的結(jié)果是()A.a(chǎn)7 B.﹣a7 C.a(chǎn)10 D.﹣a104.反比例函數(shù)是y=的圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限5.等腰三角形一條邊的邊長為3,它的另兩條邊的邊長是關(guān)于x的一元二次方程x2﹣12x+k=0的兩個根,則k的值是()A.27 B.36 C.27或36 D.186.下列運算結(jié)果正確的是()A.x2+2x2=3x4 B.(﹣2x2)3=8x6C.x2?(﹣x3)=﹣x5 D.2x2÷x2=x7.“a是實數(shù),|a|≥0”這一事件是()A.必然事件 B.不確定事件 C.不可能事件 D.隨機事件8.已知正方形ABCD的邊長為4cm,動點P從A出發(fā),沿AD邊以1cm/s的速度運動,動點Q從B出發(fā),沿BC,CD邊以2cm/s的速度運動,點P,Q同時出發(fā),運動到點D均停止運動,設(shè)運動時間為x(秒),△BPQ的面積為y(cm2),則y與x之間的函數(shù)圖象大致是()A. B. C. D.9.某校航模小分隊年齡情況如表所示,則這12名隊員年齡的眾數(shù)、中位數(shù)分別是()年齡(歲)1213141516人數(shù)12252A.2,14歲 B.2,15歲 C.19歲,20歲 D.15歲,15歲10.如圖,圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,按此規(guī)律,則第(n)個圖形中面積為1的正方形的個數(shù)為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.12.如圖,點P的坐標為(2,2),點A,B分別在x軸,y軸的正半軸上運動,且∠APB=90°.下列結(jié)論:①PA=PB;②當(dāng)OA=OB時四邊形OAPB是正方形;③四邊形OAPB的面積和周長都是定值;④連接OP,AB,則AB>OP.其中正確的結(jié)論是_____.(把你認為正確結(jié)論的序號都填上)13.一個正n邊形的中心角等于18°,那么n=_____.14.釣魚島是中國的固有領(lǐng)土,位于中國東海,面積約4400000平方米,數(shù)據(jù)4400000用科學(xué)記數(shù)法表示為______.15.在Rt△ABC中,∠C=90°,AB=2,BC=,則sin=_____.16.已知函數(shù)y=|x2﹣x﹣2|,直線y=kx+4恰好與y=|x2﹣x﹣2|的圖象只有三個交點,則k的值為_____.17.矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點P,且DP=1.將矩形紙片折疊,使點B與點P重合,折痕所在直線交矩形兩邊于點E,F(xiàn),則EF長為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求證:△ABC≌△AED;當(dāng)∠B=140°時,求∠BAE的度數(shù).19.(5分)“揚州漆器”名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.求與之間的函數(shù)關(guān)系式;如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.20.(8分)將二次函數(shù)的解析式化為的形式,并指出該函數(shù)圖象的開口方向、頂點坐標和對稱軸.21.(10分)如圖①,二次函數(shù)的拋物線的頂點坐標C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最小?若存在,求出這個最小值及點G、H的坐標;若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標;若不存在,請說明理由.22.(10分)如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=12(1)求證:直線BF是⊙O的切線;(2)若AB=5,sin∠CBF=5523.(12分)某校學(xué)生會準備調(diào)查六年級學(xué)生參加“武術(shù)類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數(shù).(1)確定調(diào)查方式時,甲同學(xué)說:“我到六年級(1)班去調(diào)查全體同學(xué)”;乙同學(xué)說:“放學(xué)時我到校門口隨機調(diào)查部分同學(xué)”;丙同學(xué)說:“我到六年級每個班隨機調(diào)查一定數(shù)量的同學(xué)”.請指出哪位同學(xué)的調(diào)查方式最合理.類別頻數(shù)(人數(shù))頻率武術(shù)類0.25書畫類200.20棋牌類15b器樂類合計a1.00(2)他們采用了最為合理的調(diào)查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計表和扇形統(tǒng)計圖.請你根據(jù)以上圖表提供的信息解答下列問題:①a=_____,b=_____;②在扇形統(tǒng)計圖中,器樂類所對應(yīng)扇形的圓心角的度數(shù)是_____;③若該校六年級有學(xué)生560人,請你估計大約有多少學(xué)生參加武術(shù)類校本課程.24.(14分)為了傳承祖國的優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“山重水復(fù)疑無路”.(1)小明回答該問題時,僅對第二個字是選“重”還是選“窮”難以抉擇,隨機選擇其中一個,則小明回答正確的概率是;(2)小麗回答該問題時,對第二個字是選“重”還是選“窮”、第四個字是選“富”還是選“復(fù)”都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.九宮格

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)DE∥AB可求得∠CDE=∠B解答即可.【詳解】解:∵DE∥AB,∴∠CDE=∠B=46°,故選:C.【點睛】本題主要考查平行線的性質(zhì):兩直線平行,同位角相等.快速解題的關(guān)鍵是牢記平行線的性質(zhì).2、B【解析】

符號不同,絕對值相等的兩個數(shù)互為相反數(shù),可據(jù)此來判斷各選項是否正確.【詳解】A、3和-3互為相反數(shù),錯誤;B、3與-3互為相反數(shù),正確;C、3與互為倒數(shù),錯誤;D、3與-互為負倒數(shù),錯誤;故選B.【點睛】此題考查相反數(shù)問題,正確理解相反數(shù)的定義是解答此題的關(guān)鍵.3、B【解析】分析:根據(jù)同底數(shù)冪的乘法計算即可,計算時注意確定符號.詳解:(-a2)·a5=-a7.故選B.點睛:本題考查了同底數(shù)冪的乘法,熟練掌握同底數(shù)的冪相乘,底數(shù)不變,指數(shù)相加是解答本題的關(guān)鍵.4、B【解析】

解:∵反比例函數(shù)是y=中,k=2>0,

∴此函數(shù)圖象的兩個分支分別位于一、三象限.

故選B.5、B【解析】試題分析:由于等腰三角形的一邊長3為底或為腰不能確定,故應(yīng)分兩種情況進行討論:(3)當(dāng)3為腰時,其他兩條邊中必有一個為3,把x=3代入原方程可求出k的值,進而求出方程的另一個根,再根據(jù)三角形的三邊關(guān)系判斷是否符合題意即可;(3)當(dāng)3為底時,則其他兩條邊相等,即方程有兩個相等的實數(shù)根,由△=0可求出k的值,再求出方程的兩個根進行判斷即可.試題解析:分兩種情況:(3)當(dāng)其他兩條邊中有一個為3時,將x=3代入原方程,得:33-33×3+k=0解得:k=37將k=37代入原方程,得:x3-33x+37=0解得x=3或93,3,9不能組成三角形,不符合題意舍去;(3)當(dāng)3為底時,則其他兩邊相等,即△=0,此時:344-4k=0解得:k=3將k=3代入原方程,得:x3-33x+3=0解得:x=63,6,6能夠組成三角形,符合題意.故k的值為3.故選B.考點:3.等腰三角形的性質(zhì);3.一元二次方程的解.6、C【解析】

直接利用整式的除法運算以及積的乘方運算法則、合并同類項法則分別化簡得出答案.【詳解】A選項:x2+2x2=3x2,故此選項錯誤;B選項:(﹣2x2)3=﹣8x6,故此選項錯誤;C選項:x2?(﹣x3)=﹣x5,故此選項正確;D選項:2x2÷x2=2,故此選項錯誤.故選C.【點睛】考查了整式的除法運算以及積的乘方運算、合并同類項,正確掌握運算法則是解題關(guān)鍵.7、A【解析】根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,由a是實數(shù),得|a|≥0恒成立,因此,這一事件是必然事件.故選A.8、B【解析】

根據(jù)題意,Q點分別在BC、CD上運動時,形成不同的三角形,分別用x表示即可.【詳解】(1)當(dāng)0≤x≤2時,BQ=2x當(dāng)2≤x≤4時,如下圖由上可知故選:B.【點睛】本題是雙動點問題,解答時要注意討論動點在臨界兩側(cè)時形成的不同圖形,并要根據(jù)圖形列出函數(shù)關(guān)系式.9、D【解析】

眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【詳解】解:數(shù)據(jù)1出現(xiàn)了5次,最多,故為眾數(shù)為1;按大小排列第6和第7個數(shù)均是1,所以中位數(shù)是1.故選D.【點睛】本題主要考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求.如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).10、C【解析】

由圖形可知:第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規(guī)律,第n個圖形中面積為1的正方形有2+3+4+…+n+1=.【詳解】第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規(guī)律,第n個圖形中面積為1的正方形有2+3+4+…+(n+1)=個.【點睛】本題考查了規(guī)律的知識點,解題的關(guān)鍵是根據(jù)圖形的變化找出規(guī)律.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據(jù)題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數(shù)目以及能搭成一個三角形的情況數(shù)目,根據(jù)概率的計算方法,計算可得答案.【詳解】根據(jù)題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.12、①②【解析】

過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證△APM≌△BPN,可對①進行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當(dāng)當(dāng)OA=OB時,OA=OB=1,然后可對②作出判斷,由△APM≌△BPN可對四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據(jù)AP和PB的長度變化情況可對四邊形OAPB的周長作出判斷,求得AB的最大值以及OP的長度可對④作出判斷.【詳解】過P作PM⊥y軸于M,PN⊥x軸于N

∵P(1,1),

∴PN=PM=1.

∵x軸⊥y軸,

∴∠MON=∠PNO=∠PMO=90°,

∴∠MPN=360°-90°-90°-90°=90°,則四邊形MONP是正方形,

∴OM=ON=PN=PM=1,

∵∠MPA=∠APB=90°,

∴∠MPA=∠NPB.

∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,

∴△MPA≌△NPB,

∴PA=PB,故①正確.

∵△MPA≌△NPB,

∴AM=BN,

∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.

當(dāng)OA=OB時,OA=OB=1,則點A、B分別與點M、N重合,此時四邊形OAPB是正方形,故②正確.

∵△MPA≌△NPB,

∴四邊形OAPB的面積=四邊形AONP的面積+△PNB的面積=四邊形AONP的面積+△PMA的面積=正方形PMON的面積=2.

∵OA+OB=2,PA=PB,且PA和PB的長度會不斷的變化,故周長不是定值,故③錯誤.

,∵∠AOB+∠APB=180°,

∴點A、O、B、P共圓,且AB為直徑,所以

AB≥OP,故④錯誤.

故答案為:①②.【點睛】本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,坐標與圖形性質(zhì),正方形的性質(zhì)的應(yīng)用,關(guān)鍵是推出AM=BN和推出OA+OB=OM+ON13、20【解析】

由正n邊形的中心角為18°,可得方程18n=360,解方程即可求得答案.【詳解】∵正n邊形的中心角為18°,∴18n=360,∴n=20.故答案為20.【點睛】本題考查的知識點是正多邊形和圓,解題的關(guān)鍵是熟練的掌握正多邊形和圓.14、

【解析】試題分析:將4400000用科學(xué)記數(shù)法表示為:4.4×1.故答案為4.4×1.考點:科學(xué)記數(shù)法—表示較大的數(shù).15、【解析】

根據(jù)∠A的正弦求出∠A=60°,再根據(jù)30°的正弦值求解即可.【詳解】解:∵,∴∠A=60°,∴.故答案為.【點睛】本題考查了特殊角的三角函數(shù)值,熟記30°、45°、60°角的三角函數(shù)值是解題的關(guān)鍵.16、1﹣1或﹣1【解析】

直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時,直線y=kx+4與y=|x1-x-1|的圖象恰好有三個公共點,即-x1+x+1=kx+4有相等的實數(shù)解,利用根的判別式的意義可求出此時k的值,另外當(dāng)y=kx+4過(1,0)時,也滿足條件.【詳解】解:當(dāng)y=0時,x1-x-1=0,解得x1=-1,x1=1,

則拋物線y=x1-x-1與x軸的交點為(-1,0),(1,0),

把拋物線y=x1-x-1圖象x軸下方的部分沿x軸翻折到x軸上方,

則翻折部分的拋物線解析式為y=-x1+x+1(-1≤x≤1),

當(dāng)直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時,

直線y=kx+4與函數(shù)y=|x1-x-1|的圖象恰好有三個公共點,

即-x1+x+1=kx+4有相等的實數(shù)解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,

解得k=1±1,

所以k的值為1+1或1-1.

當(dāng)k=1+1時,經(jīng)檢驗,切點橫坐標為x=-<-1不符合題意,舍去.

當(dāng)y=kx+4過(1,0)時,k=-1,也滿足條件,故答案為1-1或-1.【點睛】本題考查了二次函數(shù)與幾何變換:翻折變化不改變圖形的大小,故|a|不變,利用頂點式即可求得翻折后的二次函數(shù)解析式;也可利用絕對值的意義,直接寫出自變量在-1≤x≤1上時的解析式。17、6或2.【解析】試題分析:根據(jù)P點的不同位置,此題分兩種情況計算:①點P在CD上;②點P在AD上.①點P在CD上時,如圖:∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四邊形PFBE是鄰邊相等的矩形即正方形,EF過點C,∵BF=BC=6,∴由勾股定理求得EF=;②點P在AD上時,如圖:先建立相似三角形,過E作EQ⊥AB于Q,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得PB==1,∵EF垂直平分PB,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP∽△EFQ(兩角對應(yīng)相等,兩三角形相似),∴對應(yīng)線段成比例:,代入相應(yīng)數(shù)值:,∴EF=2.綜上所述:EF長為6或2.考點:翻折變換(折疊問題).三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)80°.【分析】(1)根據(jù)∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據(jù)全等三角形對應(yīng)角相等,運用五邊形內(nèi)角和,即可得到∠BAE的度數(shù).【解析】

(1)根據(jù)∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據(jù)全等三角形對應(yīng)角相等,運用五邊形內(nèi)角和,即可得到∠BAE的度數(shù).【詳解】證明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);解:(2)當(dāng)∠B=140°時,∠E=140°,又∵∠BCD=∠EDC=90°,∴五邊形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【點睛】考點:全等三角形的判定與性質(zhì).19、(1);(2)單價為46元時,利潤最大為3840元.(3)單價的范圍是45元到55元.【解析】

(1)可用待定系數(shù)法來確定y與x之間的函數(shù)關(guān)系式;(2)根據(jù)利潤=銷售量×單件的利潤,然后將(1)中的函數(shù)式代入其中,求出利潤和銷售單件之間的關(guān)系式,然后根據(jù)其性質(zhì)來判斷出最大利潤;(3)首先得出w與x的函數(shù)關(guān)系式,進而利用所獲利潤等于3600元時,對應(yīng)x的值,根據(jù)增減性,求出x的取值范圍.【詳解】(1)由題意得:.故y與x之間的函數(shù)關(guān)系式為:y=-10x+700,(2)由題意,得-10x+700≥240,解得x≤46,設(shè)利潤為w=(x-30)?y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50時,w隨x的增大而增大,∴x=46時,w大=-10(46-50)2+4000=3840,答:當(dāng)銷售單價為46元時,每天獲取的利潤最大,最大利潤是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如圖所示,由圖象得:當(dāng)45≤x≤55時,捐款后每天剩余利潤不低于3600元.【點睛】此題主要考查了二次函數(shù)的應(yīng)用、一次函數(shù)的應(yīng)用和一元二次方程的應(yīng)用,利用函數(shù)增減性得出最值是解題關(guān)鍵,能從實際問題中抽象出二次函數(shù)模型是解答本題的重點和難點.20、開口方向:向上;點坐標:(-1,-3);稱軸:直線.【解析】

將二次函數(shù)一般式化為頂點式,再根據(jù)a的值即可確定該函數(shù)圖像的開口方向、頂點坐標和對稱軸.【詳解】解:,,,∴開口方向:向上,頂點坐標:(-1,-3),對稱軸:直線.【點睛】熟練掌握將一般式化為頂點式是解題關(guān)鍵.21、【小題1】設(shè)所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負半軸上取一點I,使得點F與點I關(guān)于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設(shè)過A、E兩點的一次函數(shù)解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標為-2,將x=-2,代入拋物線,得∴點E坐標為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網(wǎng)]∴點D與點E關(guān)于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數(shù)解析式為:y=-x+1∴當(dāng)x=0時,y=1∴點F坐標為(0,1)……5分∴|DF|=2………③又∵點F與點I關(guān)于x軸對稱,∴點I坐標為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時,EG+GH+HI最小設(shè)過E(-2,3)、I(0,-1)兩點的函數(shù)解析式為:y=k分別將點E(-2,3)、點I(0,-1)代入y=k-2k1過I、E兩點的一次函數(shù)解析式為:y=-2x-1∴當(dāng)x=-1時,y=1;當(dāng)y=0時,x=-12∴點G坐標為(-1,1),點H坐標為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點A(1,0),點C(-1,4),設(shè)過A(1,0),點C(-1,4)兩點的函數(shù)解析式為:,得:k2解得:k2過A、C兩點的一次函數(shù)解析式為:y=-2x+2,當(dāng)x=0時,y=2,即M的坐標為(0,2);由圖可知,△AOM為直角三角形,且OAOM要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論;……………9分①當(dāng)∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;……………………10分②當(dāng)∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.……11分綜上所述,存在以P、C、M為頂點的三角形與△AOM相似,點P的坐標為(-4,0)12分【解析】(1)直接利用三點式求出二次函數(shù)的解析式;(2)若四邊形DFHG的周長最小,應(yīng)將邊長進行轉(zhuǎn)換,利用對稱性,要使四邊形DFHG的周長最小,由于DF是一個定值,只要使DG+GH+HI最小即可,由圖形的對稱性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時,EG+GH+HI最小,即|EI|=(-2-0即邊形DFHG的周長最小為2+25(3)要使△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論,①當(dāng)∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;②當(dāng)∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.即求出以P、C、M為頂點的三角形與△AO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論