版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
型-不定
考研高數(shù)基礎(chǔ)模塊精講講義-0 、、0 窮 法 Taylor分u(x)vx)evxlimu②ee~ (③lnln(1)~ (④xsinxtanx x ex2cosx0xln(1(ex21)(1解:I
x21 2例2.limtanxsin Q:Ilimxxx0 ·解:Ilimtanx1-cosx · 例3.lim1[2cosx)xx0 (2cosx)x解:I
xln2coslim
ln2cos l1cosxlim 1limcosx13x0 6例4.lim(2x)x
(1x)xlim2x
xln(1xlim 2
ln(1x 2 恒等lim(1)12 1解:Ilim{[1
sinx1)]
e2x1( ( 例2.lim(cos1 1limx2(cos
c1 x limcostet0te1tanxx01sin解:I
)tanxsinx1)Δ]x31 0,nP(x)lim xm
,n ,nx2xsin x 0即11 0·1 1 1 xo sin2sin2x sin2x解:Ix0x2sin2
(lim ·limsinxxsinx-· 2limsinx 2limcosx13x0 3x24xx24x方法一:I
4x x24x10414x14x14x14x
2(1410)12 x1lim(14t10t2)2t ∵(1x)a1~ax(x1∴(14t10t2)21~2t5t2~∴I0型:0e0ln即例1lim(
)tan解:Iex01limtanxlne2 1limtanxln 2x0
lim2x0 1lime2e0解:I2 limsin2xln x02 e0? 定?定積分定例1.lim(1x)(1x2(1x2n1x2n1
(|x|11In1 1例2.limcosxcosxcosx(x 2cosx2cosx2cos
2n2n
sin sinn2nsinxsinlim 2xsinx
nnsinn2例3.lim(11 n (2n1)(2n解:Ilim1n
2n
)2例
解: n2
∴In2例5.limn2ni1n3 1 解 i 3n
i1n
nnn
n(n1)(2n6·∴l(xiāng)im左1lim右·∴I3
3 型三左、右極限?分段(?若f(x)中含ab
(x例1.f(x)ex2解:f(20)
limfxf(20)limf(x)sin 12例 x0|x 12解:f(00)11f(00)1(1)f(0)f(00)∴l(xiāng)imf(x) 1 2 x?rctanx2
xlim[x] lim[x]xm
(m準(zhǔn)側(cè)I定理Case1.{a無上界liman 如
n
n{a}且 1 n nn無下界liman 注
n?{an且liman,則ann?{an且liman,則ann方法二:an1an例1.0a16,an1 an(6an),證:liman存n
an6an3an1an
an(6an)2an(3an an(6an)an1an{an}liman2 2 例2.a1 2,a2 2 2,a3 ?liman存在,2 2 解?an1a2設(shè)ak1
2 2ak1 2ak,即ak2akn,an1an{an}現(xiàn)證ana1 2設(shè)akak1 2akn有anliman?令liman2由a22211設(shè)ak1ak求證an2a11則1ak11akak21故{an下證{an}
0,證liman存在證a20a1ak證
12a
5設(shè)a1 5 52則ak
15{an}單調(diào)減少且有下界nliman1、連?f(x)在xa處連續(xù)若limf(x)f(a)得f(x)在xa注:f(x)在x0處連續(xù)f(a0)f(a0f?f(x)在[ab]上連續(xù)
f(x)在(ab)f(a)f(a0),f(b)f(b得f(x)在(ab)上連續(xù),記f(xC[a間斷若limf(x
f(a),f(x)在xa第一類間斷點(diǎn):f(a0),f(a0)f(a0)f(a0)(f(a)af(a0)f(a0)a為跳躍間x第二類間斷點(diǎn):f(a0),f(a0)至少一個(gè)不存在例1.f(x) x1e1 解x0,x x0時(shí) 0e1x1~x1e1x
1x1
1limf(x) xx0f(10)f(10)f(10)f(1x1為跳躍間例2.f(x) sin解:xk(k)為間斷點(diǎn)limf(x)x0f(0)x為第二類同理:x[k且k0]為第二類間斷點(diǎn)二、f(x)C[a,b]性質(zhì)1.(最值)若f(xC[ab]則m.有界)若f(xC[ab],則K0,f(x)MYmYm0ab3.(零點(diǎn))若f(xC[ab]且f(af(b0則(a,b,使f(4.(介法)若f(x)C[a,b],[m,n], [a,batleastonepo
f(介值:thevalue (位于m和n之間值f(x)至少可取到一次b]出現(xiàn)函數(shù)值之和用介值定理例1.f(xC[0,2].f(0)2f(1)3f(2)12證:C[0,2],使f(c)證:f(xC[0,2m6mf(0)2f(1)3f(2)m2C[0,2]使f(c例2.f(xC[0,2].2f(0)f(1)ff(xC[1,2f(x)在[1,2]上有mf(1)f(2)2c[1,2使f(cf(1)f(2)2
f(1)f(2)2ff(0)f②f(x)C[a,b].[a,b],介值定例3.f(xC[abp0q(pq)mpf(a)qf(b)(p2.mpf(a)qf(b)p[a,b],pb
f(x)dxf()(bb2.mf(x)Mm(ba)af(x)dxM(ba)m bf(x)dx ( bf(x)dxfbba[a,
baPartI
00
題型
例1.f(xC(ab)在(ab)內(nèi)可導(dǎo)f(af(b0,f(afab2證:ab),使f()1.f(afab0x(aab 使f(x1)f(a)f(b)f(ab)f(b)ax b)使f(x 2.f(x1)f(x2x1x2(ab)使f()例2.f(xC[0,3]在(0,3)內(nèi)可導(dǎo)f(0)f(1)f(23,f(3證:0,3)使f():1f(xC[0,2f(x)在[0,2]上有mMmf(0)f(1f(2)M3即m1C[0,2]使f(c2.f(c)f(3)c,3(0,3)使f(例3.f(x)三階可導(dǎo),f(1)0,F(xx3f2.F(x)3x2f(x)x3fF(0)F(1) F(2)3.F(x)6xf(x)3x2f(x)3x2f(x)x3f
(x 12證:f(0)1,f()2
1,f(1)2
0左低右高(a非極值點(diǎn) f(a)0左高右低(a非極值點(diǎn))f()
f(a)
f(a)為極值f(a)型二含ζ方法一:還原法[lnf(x)]ff例1f(xC[0,1]在(0,1)內(nèi)可導(dǎo),f(1)0證:0,1)使f(3f()分析xf(x)3f(x)f(x)3f [lnf(x)](lnx3)[lnx3f(x)]證:令(xx3f例2.f(xC[ab]在(ab)內(nèi)可導(dǎo),f(a分析:f(x2f(x)f(x)2f[lnf(x)](lne2x)[lne2xf(x)]證:令(xe2xff(a)f(b)而(x2e2xf(xe2xfe2x[f(x)2fe2
分析:f(x2f1
f(x)f
x[lnf(x)][ln(x1)2][ln(x1)2f(x)]證:令(xx1)2ff(0)f(1C(0,1)使f(c(c)記?fkf(x)ekxf(x)fk(lnf)(lnekx)?fkf(x)xkf(x)fk(lnf)(lnxk)fx方法二:分組?f()ff(x)f(x)f(x)f(x)f(x)f(x)[f(x)f(x)][f(x)f(x)]gg0g10(lng)(lnex)g(x)ex[f(x)ff(x)f(x)f(x)f(x)[f(x)f(x)][f(x)f(x)]gg(x)ex[f(x)f?f()f()1f(x)f(x)1f f
1)f[f(x)][f(x)1]gg(x)ex[f(x)例1.f(xC[0,1],在(0,1)內(nèi)可導(dǎo).f(0)?C(0,1),f(c)證:?(xf(x(0 0
0,f
1,f(1) (2C1,1)(0,1)使(c)2f(c)?分析:f(x2[f(xx[f(x)x]2[f(x)x]h(x)e2x[f(x)x]h(0)h(c)0ζ、case1.結(jié)論中只有f()、f(找三 兩次?C(0,1)使f(c)1證:?令(x)
f(x)1x,(0)1,(1)C(0,1使(c)0
f(c)1f()f(c)f(0)1 1
1?C(0,1),f(c)2
ff(x)
f證:?(x) ?(0,c),f()f(c)f(0)
f(1)f(c)1
2(1 f
f
2C2(1C)Case2.含ζ、η兩者復(fù)雜度不 [e2xff f (1 )————?
————證令F(x)x2F(x)2xab)f(bf(ab2f(b)f(a)(ab)fb
(a,b)f(b)f(a)b
f例2f(xC[ab]在(ab)內(nèi)可導(dǎo)(a0).證:,(ab)使abf()2f證:令F(x1F(x1 (a,b),使f(b)f(a) f1 abf(b)f(a)2fb例3f(xC[ab],在(ab)內(nèi)可導(dǎo)f(a)證:令(xexf
f(b)1.證,(a ebf(b)eaf(a) (a,b),f(a)f(b)
b
e[f( f(左
b
(a,型四Lf(x)?f(b)f(a)f()(b?見三點(diǎn)兩次例1.limf(xelimf(xf(x1)limxC)xC xx解:f(xf(x1)
f (x1右2Clim
x
)2C
x2C xxCee2C C1例2.f(x0,f(x0,dyf(x0)xyf(x0xf(x0x0dyy,0大小解:yf (x0x0f
fx0 f(x0)f又f(x0)xdy
f3fx在ab]上可導(dǎo)f(a f(b 證. (a,b f(c).
f(x)(b0
M,fxab)內(nèi)至少有一個(gè)零a f(c)
f(a) f'(
1)(c a),1 (a,cf(b) f(c) f'(
2)(bc),2 (c,b f(a f (b f
(ca(bc例4.fx)在[a,b]上二階證ab)使f(01(a,c),2(c,
L:yf(f
) f(c)c
f(aaf(2)2
f(b)b
f(cc
(ac A、C、B f'(1) f'(2(1,2) (a,b f() f(n)(x f(n1) f(x)f(x0)f(x0)(xx0) 0(xx0)n (n
(xx0Rn(x)
f(n1)(n
(xx0
(c x x0 中 端 (c 無 (c 端x 中 任一1f(x)C[1,1 f(1)0,f(0)0,f(1)證:111
1,1), f()f(0f(1) f(0)
(10)2 f(1
(10)3, (1,0
f(1)
f(0) (10)2!
(10!
,
(0,10
(0)
f(0)
f(11 f(0) f(0) f(2) 2f(1)3
f(2)f(x)C[1,2f(x)在[1,2]上 m,2m f(1) f(2)2m3例
1,1),f()fx)在[0,1],f(0)C(0,1),f(c)1,f(c)
f(1)0,0x
f(x)f(0)f(c)f(1)(0c)2,(0, ff(1)f(c)
2f(1)c22f(2) 2①C
0
1c f() 8,②C
2,1
1f()
18, 3.f(xab]上fx在(a,b)PartⅡ單調(diào)性與極一、yf(x)(xD),x0If0,當(dāng)0 xx0f(x)f(x0
f(x)稱x0為極小點(diǎn)
fx0)為Iff(x)
00f(x0
xx
fx0稱0不 00f(a) 0
不存在二、求極值步驟f(x)
0駐點(diǎn))①yx2,y2x0xyx3,y3x20xyxx0處0,xyx,xf(0)0,f(0)f(0)
xx0,
(x)
xx為極小xx,f(x) ② xx為極xx0② xx為極xx,f(x) 方Th2f(x0) fx00,x0為 0不討論 f(x
) xx
f(x) x 0,當(dāng) f(x x
x
f(x) 0,x (x x0f0 (x 0,x ( , f00 xx0為極小點(diǎn)1.fx連續(xù)
f(x)
x x解x
f(x)1x
2 f(0)xx
f(x)1xf(x)1x
2 2
(0)0,當(dāng)0 x時(shí)f(x)10xx0為2.f(1)0,
f(x)1 f(0f(x)x
3解
f(x
2x
sin300f(x)
x
sin3f(x)f (x)f
0,x0,x
(1,1(1,1x1為極大例3.f(x)連續(xù) f(0)0.x
f(x)f(x)x證fa)1
f(b
M(baC(ab),fc最大,fc)2f(c)f(a)f(1)(c a),1 (a,c2f(b)f(c)f
)(bc),2 (c,b f(a)M(caf(b)M(bc
f(x)f(x)2x
f(0)f(0)0f(0)2lim[f(x)f(0)f(x)f(0) f(0)ff(0)2x0為ylnxyln(1yln(1x)x0f(x)c( , 型例1.f(a)g(a f(a)g(af(x)g(x)(xa證:f(x)g(x)(xa證:(x) f(x)g(x(a)0,(a) 0,(x)0(xa f' (a) (x)0(xa(x)0(xa (a)(x)0(xa)(x) 0(xaCase1關(guān)于ab不等2eab證:abb證:abbablnaalnb令(x xlnaalnx,(a)(x)lnax(a)
(xa(x)0(x a)(x) 0(xaba,(b):例3.0ab, lnblna:b 2. x的不等式例4.證: ex1x
2a2b證 x)ex1x,(0)(x)(x)
exex
1,(0)0(0)(x)
(x) (x)
0,x0,x x0為x)為最小(0)0,(x)1x例5.證1xln(1x1x證:(x)1xln(1x(0)(x)ln(x
1x2) (1 ) ln(x
1x2),(0) (1 ) (0)0(x)0,x (x) (x)0,x x0為(x)的最小中值定例6 x0,證:1
ln(1x)方法一: f(x)xln(1x),f(0)f(x)1 1
0(x0 f(0) f(x)0(x0f (x)0(x0f令g(x)
1x) 1
,g(0)g(x) 1
(1x)
0(x0 g(0) g(x)0(x0g(x)0(x0令(t) ln(1t)(t0ln(1x)(x (0 () 1
(0 x 1 1 1
ln(1x)例7.0ab,證:lnbln 2 1(a
bx
a2b11
a2bf(x)Mf(x)M型三方程根或函數(shù)零點(diǎn)個(gè)數(shù)22x證:(xlnxe
(x(x)110x (e)1xe為最大點(diǎn)M(e) lim(x),lim(x) 方程只有2例2.討論xexa幾根(a (x2.(x)exxex(1x)ex0xx M(1)1e?M0,即a1e?M0,即a1時(shí),方程只有一個(gè)解xe?Mlim(x)lim(x)lim(xex limxxa方程2PartI理論?ax0x1xn[a,b][x0,x1][xn1,xnxixi?i[xi1,xinif(in ?max{x n
0(t)t[T1T2求?T1t0t1tn[T1,T2][t0,t1][tn1,tntiti?i[ti1,tin?max{t n0二、定積分定nyf(x)在[ab]上有界,若limf(i)xi存在,解f(x)在[ab]上可積,極限值稱為f(x)0b[a,b]上的定積分,記afb f(x)dxlimf()ix 0注
f
[a,b]劃與
?0n bax1xnnba
2?例f(x
xxR/nf(x)在[ab]上有界limf()ix0nn0Case2.iR/nn0nn
f(x)在[ab]上不可f(x)在[ab]上連?f(x)在[ab]除有限個(gè)第一類間斷點(diǎn)非連續(xù),則f(x)在[ab]上一定?設(shè)f(x)在[0,1]
1][1,2][[n1,n n
1n
f()x
f(0
nn 1f( 記 f()f 若干次和或積??定?定積分定義分母比分子高
n
n
1nnlim1 n0
nni11n
1例2.lim1p2pnpp
np1p
x ( 例
lim1nni1in
1(1in 0x定積分 λ
i
f(ξi)ΔΔax0x1xni[xi1,xinni
f(ξi)Δxλ1i
{xi
f注設(shè)f(x)在[0,1]上可[0,1][0,1][1,2][n1,n n
1(0nn nf()x
f(in n01
nn 0fimnf(imnf()f0 例.lim
n2
n2lim1 nni11(i 010arctanx04二、理 f(xc[ab](xxf(t)dt.則(xa
fx xxxx
f fQ2.
f(x,
f
f①dx d 2(dfdx1(例1.f(x)連續(xù)F(xxtf(xt)dt求F0010 x0f(u)du0uf2.F(x)xf(u)duxf(x)xf0F(x)fb (N.L.)af(x)dxF(b)Fb三、性(一)、一般性 a(fg)dxafdxa akfdxka fdxafdxcba1dxbb①f(x)0af(x)dx
(a②fg
fdx
(a a★③|afdx|a
|f|dx
|f (abf(x)c[a,b],則[a,b]使 fdxf()(bb證:fC[abmmf(x)bm(ba)af(x)dxM(bbm bf(x)dxMbaa[abf() bf(x)dxbaaxex2de1fex2d(x2)1x2(t
(xsinf(x)dxf x2sint,t
,2xcost,txtant,t,2udvuvvdbbudvuv|b (二)、特殊性
f(x)C[a,a],af(x)dx0[f(x)f 證:左af(x)dx0f xt f(x)dxf(t)(dt)f(t)dt
f 左0f(xf 4 4( 01sin24sec202tanx4
1sin ?f(xC[0,1]2f(sinx)dx2
f(cos xt2
f2 0f(cost)dt
f(cos例2.2 sin dxI0sinxxt
cos 2sinxcos22II 特例:20
n
20
nxdxIIn1n n I0I1 I13 34 例
22
xdx
2sin4xdx
2X4231 o
22c
xdx
97531 sin220
sin211
sin211
2 )sin2x01 1x2sin2xdxI
1
例5?設(shè)f(x)g(xC[aa],f(xf(x)Ag(x)
f(x)g(x)dxA
g(x)dx,計(jì)數(shù)?2arctan
cos3 2a證:?左0[f(x)g(x)faa0[f(x)faaA0a2arctanexcos322(arctanexarctanex)cos30(arctan
x e arctane)1e2x1e2xarctanexarctanex取x0,A2I 312os3xdx 2 ?f(sinx)dx
f(sinx)dx,
sinxdx 證:左0f(sinx)dxf(sin2 xtf(sin2
f(sin22f(sin0 ncosxdx 2In n2?xf(sinx)dxf(sin2 xt證:左I (t)f(sin0(x)f(sin If(sin2
f(sinx)dx0xf(sinI
xsinx01cos2 sin 2o1cos2 d(cos 2o1cos
cos0 7xt
sin 0
t
2t2 2
20
22
1 設(shè)fx)可
T為周期,則①
a f(x)dx
fx)dx(平如4sin2
2sin2xdxs4in2xdx2 ② f(x)dxn0f(例1.lim( nn n
1 nni11n1 ln(1x)1ln01 例2 lim1nn 0x
1
0sintcos cos dx20sinxcosxt例3limn(n1)(n n1n2
nnlim nn n 1 nn nenn
n111ln(1x)dxxln(1x)11x1 1ln21(11 1ln21ln(1x)0ln41lneIe型二例1.fx)連續(xù),limfx)
F(x)xtf(x2t2)dt
F(x x x1.F xtf(x2t201xf(x2t2)d(x2t2 x2t2 2x2f(u) x2f(u 2.limF(xx x12x
x2f(u0xx
1f(x2)224x14x
f(x2 x x例2.f(x)連續(xù) f(0)0 0tf(xt)xx.0tf(xt)xxt 0(xu)f(u)(du0x(xt)f(t)
x 0
f(t) x f(t)dt0tf(t) x.I x f(t)dt0tf(t)x
xxx
xf(t)
f(t)xxx0
f(t)dtxf(xx f(t)xx xx0
f(t)dt
f(x.x
0f(t)x
x
f(x)f(0I f(0 f(0)f(0 型三計(jì)算例1.2x 01(x1)1(x1)11(x1)20[(2
1)1]2 d(x1111
(x1) (12xx2 21(1x2 0xsin
2(10
sin2t)cos2 2(10
2t2(2
I42(2
3
22ln2
exex解: txln(1exI2
3t 2 1t3(1 )1t32( )3例3fx)
xet2dt1
0f(x)dx1 1解0
f(x)dxxf(x
xf'(x)1xex201例3.f(x) xet2dt11
0f(x)dx解0
f(x)dxxf(x 1xf'(x0001xex2011ex2d(x2211exd(x21ex11(e1 例4.f(x) xsintdt 0
f(x)dx解: f(x)dxx
f(x0
0xf(x)f() xsin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《硫酸工藝學(xué)》課件
- 二尿素裝置安全課課件
- 《燒傷基礎(chǔ)知識(shí)》課件
- 《湖南鄉(xiāng)土地理》課件
- 《孕婦學(xué)校講課》課件
- 單位管理制度集合大合集職工管理
- 單位管理制度集粹匯編人員管理篇十篇
- 單位管理制度分享匯編【人力資源管理篇】十篇
- 單位管理制度分享大全職員管理篇十篇
- 2024教師安全責(zé)任協(xié)議書(28篇)
- GB/T 23586-2022醬鹵肉制品質(zhì)量通則
- 抗震支架計(jì)算書
- 大學(xué)生如果提高自己安全意識(shí)
- 意識(shí)障礙的判斷及護(hù)理
- 《尾礦庫安全監(jiān)測(cè)技術(shù)規(guī)范》
- 人工智能基礎(chǔ)與應(yīng)用(第2版)全套教學(xué)課件
- 數(shù)據(jù)資產(chǎn)入表理論與實(shí)踐
- 《建筑施工安全檢查標(biāo)準(zhǔn)》JGJ59-20248
- 磁共振技術(shù)在食品加工中的應(yīng)用
- 國家應(yīng)急救援員(五級(jí))理論考核試題及答案
- 材料測(cè)試方法智慧樹知到期末考試答案2024年
評(píng)論
0/150
提交評(píng)論