




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TransportationandNetworkModels(英文版知識(shí)講義)第五講TransportationandNetworkModelsIntroductionSeveralspecificmodels(whichcanbeusedastemplatesforreal-lifeproblems)willbeintroduced.TRANSPORTATIONMODEL
ASSIGNMENTMODEL
NETWORKMODELS
IntroductionTRANSPORTATIONMODEL
ASSIGNMENTMODEL
Determinehowtosendproductsfromvarioussourcestovariousdestinationsinordertosatisfyrequirementsatthelowestpossiblecost.Allocatingfixed-sizedresourcestodeterminetheoptimalassignmentofsalespeopletodistricts,jobstomachines,taskstocomputers…NETWORKMODELS
Involvethemovementorassignmentofphysicalentities(e.g.,money).TransportationModelAnexle,theAutoPowerCompanymakesavarietyofbatteryandmotorizeduninterruptibleelectricpowersupplies(UPS’s).AutoPowerhas4finalassemblyplantsinEuropeandthedieselmotorsusedbytheUPS’sareproducedintheUS,shippedto3harborsandthensenttotheassemblyplants.Productionplansforthethirdquarter(July–Sept.)havebeenset.Therequirements(demandatthedestination)andtheavailablenumberofmotorsatharbors(supplyatorigins)areshownonthenextslide:DemandSupplyAssemblyPlant
No.ofMotorsRequiredLeipzig 400(2)Nancy 900(3)Liege 200(4)Tilburg 500 2000
Harbor
No.ofMotorsAvailable(A)Amsterdam 500(B)Antwerp 700(C)LeHavre 800 2000BalancedGraphicalpresentationofLeHavre(C)800Antwerp(B)700Amsterdam(A)500SupplyLiege(3)200Tilburg(4)500Leipzig(1)400Nancy(2)900andDemand:TransportationModelAutoPowermustdecidehowmanymotorstosendfromeachharbor(supply)toeachplant(demand).Thecost($,onapermotorbasis)ofshippingisgivenbelow.
TODESTINATION
LeipzigNancyLiegeTilburgFROMORIGIN
(1)(2)(3)(4)
(A)Amsterdam 1201304159.50(B)Antwerp6140100110(C)LeHavre102.509012242Thegoalistominimizetotaltransportationcost.Sincethecostsintheprevioustableareonaperunitbasis,wecancalculatetotalcostbasedonthefollowingmatrix(wherexijrepresentsthenumberofunitsthatwillbetransportedfromOriginitoDestinationj):TransportationModel
TODESTINATIONFROMORIGIN
1234
A 120xA1130xA241xA359.50xA4
B 61xB140xB2100xB3110xB4C102.50xC190xC2122xC342xC4TotalTransportationCost=
120xA1+130xA2+41xA3+…+122xC3+42xC4TransportationModelTwogeneraltypesofconstraints.1.Thenumberofitemsshippedfromaharbor
cannotexceedthenumberofitemsavailable.ForAmsterdam:xA1+xA2+xA3+xA4
<500ForAntwerp:xB1+xB2+xB3+xB4
<700ForLeHavre:xC1+xC2+xC3+xC4
<800Note:Wecouldhaveusedan“=“insteadof“<“sincesupplyanddemandarebalancedforthismodel.TransportationModel2.Demandateachplantmustbesatisfied.ForLeipzig:xA1+xB1+xC1
>400ForNancy:xA2+xB2+xC2
>900ForLiege:xA3+xB3+xC3>200Note:Wecouldhaveusedan“=“insteadof“>“sincesupplyanddemandarebalancedforthismodel.ForTilburg:xA4+xB4+xC4>500TransportationModelTwogeneraltypesofconstraints.VariationsontheTransportationModelSupposewenowwanttomaximizethevalueoftheobjectivefunctioninsteadofminimizingit.Inthiscase,wewouldusethesamemodel,butnowtheobjectivefunctioncoefficientsdefinethecontributionmargins(i.e.,unitreturns)insteadofunitcosts.SolvingMaxTransportationModelsWhensupplyanddemandarenotequal,thentheproblemisunbalanced.Therearetwosituations:Whensupplyisgreaterthandemand:WhenSupplyandDemandDifferInthiscase,whenalldemandissatisfied,theremainingsupplythatwasnotallocatedateachoriginwouldappearasslackinthesupplyconstraintforthatorigin.Usinginequalitiesintheconstraints(asinthepreviousexle)wouldnotcauseanyproblems.VariationsontheTransportationModelInthiscase,theLPmodelhasnofeasiblesolution.However,therearetwoapproachestosolvingthisproblem:1.Rewritethesupplyconstraintstobe
equalitiesandrewritethedemand
constraintstobe<.Unfulfilleddemandwillappearasslackoneachofthedemandconstraintswhenoneoptimizesthemodel.Whendemandisgreaterthansupply:VariationsontheTransportationModel2.Revisethemodeltoappendaplaceholder
origin,calledadummyorigin,withsupply
equaltothedifferencebetweentotal
demandandtotalsupply.Thepurposeofthedummyoriginistomaketheproblembalanced(totalsupply=totaldemand)sothatonecansolveit.Thecostofsupplyinganydestinationfromthisoriginiszero.Oncesolved,anysupplyallocatedfromthisorigintoadestinationisinterpretedasunfilleddemand.VariationsontheTransportationModelCertainroutesinatransportationmodelmaybeunacceptableduetoregionalrestrictions,deliverytime,etc.Inthiscase,youcanassignanarbitrarilylargeunitcostnumber(identifiedasM)tothatroute.Thiswillforceonetoeliminatetheuseofthatroutesincethecostofusingitwouldbemuchlargerthanthatofanyotherfeasiblealternative.EliminatingUnacceptableRoutesChooseMsuchthatitwillbelargerthananyotherunitcostnumberinthemodel.VariationsontheTransportationModelGenerally,LPmodelsdonotproduceintegersolutions.TheexceptiontothisistheTransportationmodel.Ingeneral:IntegerValuedSolutionsIfallofthesuppliesanddemandsinatransportationmodelhaveintegervalues,theoptimalvaluesofthedecisionvariableswillalsohaveintegervalues.VariationsontheTransportationModelAssignmentModelIngeneral,theAssignmentmodelistheproblemofdeterminingtheoptimalassignmentofn“indivisible”agentsorobjectstontasks.Forexle,youmightwanttoassignSalespeopletosalesterritoriesComputerstonetworksConsultantstoclientsServicerepresentativestoservicecallsCommercialartiststoadvertisingcopyTheimportantconstraintisthateachpersonormachinebeassignedtooneandonlyonetask.WewillusetheAutoPowerexletoillustrateAssignmentproblems.AutoPowerEurope’sAuditingProblemAutoPower’sEuropeanheadquartersisinBrussels.Thisyear,eachofthefourcorporatevice-presidentswillvisitandauditoneoftheassemblyplantsinJune.Theplantsarelocatedin:Leipzig,GermanyLiege,BelgiumNancy,FranceTilburg,theNetherlandsAssignmentModelTheissuestoconsiderinassigningthedifferentvice-presidentstotheplantsare:1.Matchingthevice-presidents’areasof
expertisewiththeimportanceofspecific
problemareasinaplant.2.Thetimethemanagementauditwillrequire
andtheotherdemandsoneachvice-
presidentduringthetwo-weekinterval.3.Matchingthelanguageabilityofavice-
presidentwiththeplant’sdominantlanguage.Keepingtheseissuesinmind,firstestimatethe(opportunity)costtoAutoPowerofsendingeachvice-presidenttoeachplant.AssignmentModelThefollowingtableliststheassignmentcostsin$000sforeveryvice-president/plantcombination.
PLANT
LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)
Finance(F) 24102111Marketing(M)14221015Operations(O)15172019Personnel(P)11191413AssignmentModel
PLANT
LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)
Finance(F) 24102111Marketing(M)14221015Operations(O)15172019Personnel(P)11191413Considerthefollowingassignment:Totalcost=24+22+20+13=79Thequestionis,isthistheleastcostassignment?AssignmentModelCompleteenumerationisthecalculationofthetotalcostofeachfeasibleassignmentpatterninordertopicktheassignmentwiththelowesttotalcost.SolvingbyCompleteEnumerationThisisnotaproblemwhenthereareonlyafewrowsandcolumns(e.g.,vice-presidentsandplants).However,completeenumerationcanquicklybecomeburdensomeasthemodelgrowslarge.AssignmentModel1.Fcanbeassignedtoanyofthe4plants.2.OnceFisassigned,Mcanbeassignedtoany
oftheremaining3plants.3.NowOcanbeassignedtoanyofthe
remaining2plants.4.Pmustbeassignedtotheonlyremaining
plant.Thereare4x3x2x1=24possiblesolutions.Ingeneral,iftherearenrowsandncolumns,thentherewouldben(n-1)(n-2)(n-3)…(2)(1)=n!
(nfactorial)solutions.Asnincreases,n!increasesrapidly.Therefore,thismaynotbethebestmethod.AssignmentModelForthismodel,let
xij=numberofV.P’softypeiassignedtoplantjwherei=F,M,O,P
j=1,2,3,4TheLPFormulationandSolutionNoticethatthismodelisbalancedsincethetotalnumberofV.P.’sisequaltothetotalnumberofplants.Remember,onlyoneV.P.(supply)isneededateachplant(demand).AssignmentModelAsaresult,theoptimalassignmentis:
PLANT
LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)
Finance(F) 24102111Marketing(M)14221015Operations(O)15172019Personnel(P)11191413TotalCost($000’s)=10+10+15+13=48AssignmentModelTheAssignmentmodelissimilartotheTransportationmodelwiththeexceptionthatsupplycannotbedistributedtomorethanonedestination.RelationtotheTransportationModelIntheAssignmentmodel,allsuppliesanddemandsareone,andhenceintegers.Asaresult,eachdecisionvariablecellwilleithercontaina0(noassignment)ora1(assignmentmade).Ingeneral,theassignmentmodelcanbeformulatedasatransportationmodelinwhichthesupplyateachoriginandthedemandateachdestination=1.AssignmentModelCase1:SupplyExceedsDemandUnequalSupplyandDemand:Intheexle,supposethecompanyPresidentdecidesnottoaudittheplantinTilburg.Nowthereare4V.P.’stoassignto3plants.Hereisthecost(in$000s)matrixforthisscenario:
PLANT NUMBEROFV.P.sV.P. 1 2 3 AVAILABLE
F 24 10 21 1
M 14 22 10 1
O 15 17 20 1
P 11 19 14 1No.ofV.P.s 4Required 1 1 1 3
AssignmentModelToformulatethismodel,simplydroptheconstraintthatrequiredaV.P.atplant4andsolveit.AssignmentModelUnequalSupplyandDemand:Case2:DemandExceedsSupplyUnequalSupplyandDemand:Inthisexle,assumethattheV.P.ofPersonnelisunabletoparticipateintheEuropeanaudit.Nowthecostmatrixisasfollows:
PLANT NUMBEROFV.P.sV.P. 1 2 3 4 AVAILABLE
F 24 10 21 11 1
M 14 22 10 15 1
O 15 17 20 19 1No.ofV.P.s 3Required 1 1 1 1 4
AssignmentModel 1.Modifytheinequalitiesintheconstraints
(similartotheTransportationexle) 2.AddadummyV.P.asaplaceholdertothe
costmatrix(shownbelow).
PLANT NUMBEROFV.P.sV.P. 1 2 3 4 AVAILABLE
F 24 10 21 11 1
M 14 22 10 15 1
O 15 17 20 19 1Dummy 0 0 0 0 1No.ofV.P.s 4Required 1 1 1 1 4
ZerocosttoassignthedummyDummysupply;nowsupply=demandAssignmentModelInthesolution,thedummyV.P.wouldbeassignedtoaplant.Inreality,thisplantwouldnotbeaudited.AssignmentModelUnequalSupplyandDemand:InthisAssignmentmodel,theresponsefromeachassignmentisaprofitratherthanacost.MaximizationModelsForexle,AutoPowermustnowassignfournewsalespeopletothreeterritoriesinordertomaximizeprofit.Theeffectofassigninganysalespersontoaterritoryismeasuredbytheanticipatedmarginalincreaseinprofitcontributionduetotheassignment.AssignmentModelHereistheprofitmatrixforthismodel.
NUMBEROF TERRITORY SALESPEOPLE SALESPERSON 1 2 3AVAILABLE
A 40 30 20 1
B 18 28 22 1
C 12 16 20 1
D 25 24 27 1No.of 4
Salespeople 1 1 1 3
Required
ThisvaluerepresentstheprofitcontributionifAisassignedtoTerritory3.AssignmentModelTheAssignmentModelCertainassignmentsinthemodelmaybeunacceptableforvariousreasons.SituationswithUnacceptableAssignmentsInthiscase,youcanassignanarbitrarilylargeunitcost(orsmallunitprofit)numbertothatassignment.ThiswillforceSolvertoeliminatetheuseofthatassignmentsince,forexle,thecostofmakingthatassignmentwouldbemuchlargerthanthatofanyotherfeasiblealternative.AssignmentModelNetworkModelsTransportationandassignmentmodelsaremembersofamoregeneralclassofmodelscallednetworkmodels.Networkmodelsinvolvefrom-tosourcesanddestinations.Appliedtomanagementlogisticsanddistribution,networkmodelsareimportantbecause:Theycanbeappliedtoawidevarietyofrealworldmodels.Flowsmayrepresentphysicalquantities,Internetdatapackets,cash,airplanes,cars,ships,products,…ZigwellInc.isAutoPower’slargestUSdistributorofUPSgeneratorsinfiveMidwesternstates.NetworkModelsACapacitatedTransshipmentModelZigwellhas10BigGen’satsite1Thesegeneratorsmustbedeliveredtoconstructionsitesintwocitiesdenotedand343BigGen’sarerequiredatsiteand7arerequiredatsite34NetworkModels1+102543-3-7Thisisanetworkdiagramornetworkflowdiagram.Eacharrowiscalledanarcorbranch.
Eachsiteistermedanode.SupplyDemandNetworkModelscij thecosts(perunit)oftraversingthe
routesuij thecapacitiesalongtheroutesCostsareprimarilyduetofuel,tolls,andthecostofthedriverfortheaveragetimeittakestotraversethearc.Becauseofpre-establishedagreementswiththeteamsters,Zigwellmustchangedriversateachsiteitencountersonaroute.Becauseoflimitationsonthecurrentavailabilityofdrivers,thereisanupperbound,uij,onthenumberofgeneratorsthatmaytraverseanarc.NetworkModels1+102543-3-7c12c23c24c25c34c43c53u12u23u24u25u34u43u53NetworkModelsLPFormulationoftheModelNetworkModelsACapacitatedTransshipmentModelThegoalistofindashipmentplanthatsatisfiesthedemandsatminimumcost,subjecttothecapacityconstraints.Thecapacitatedtransshipmentmodelisbasicallyidenticaltothetransportationmodelexceptthat:1.Anyplantorwarehousecanshiptoanyother
plantorwarehouse2.Therecanbeupperand/orlowerbounds
(capacities)oneachshipment(branch)NetworkModelsThedecisionvariablesare:xij=totalnumberofBigGen’ssentonarc(i,j)=flowfromnodeitonodejThemodelbecomes:Minc12x12+c23x23+c24x24+c25x25+c34x34+
c43x43+c53x53+c54x54s.t.+x12=10-x12+x23+x24+x25=0-x23–x43–x53+x34=-3-x24+x43–x34–x54=-7-x25+x53+x54=00<
xij<uijallarcs(i,j)inthenetworkPropertiesoftheModel1.xijisassociatedwitheachofthe8arcsinthe
network.Therefore,thereare8corresponding
variables:x12,x23,x24,x25,x34,x43,x53,andx54Theobjectiveistominimizetotalcost.2.Thereisonematerialflowbalanceequation
associatedwitheachnodeinthenetwork.For
exle:Totalflowoutofnodeis10units1Totalflowoutofnodeminusthetotalflowintonodeiszero(i.e.,totalflowoutmustequaltotalflowintonode).222Totalflowoutofnodemustbe3unitslessthanthetotalflowintonode.33Intermediatenodesthatareneithersupplypointsnordemandpointsareoftentermedtransshipmentnodes.3.Thepositiveright-handsidescorrespondto
nodesthatarenetsuppliers(origins).Thesumofallright-hand-sidetermsiszero(i.e.,totalsupplyinthenetworkequalstotaldemand).Thezeroright-handsidescorrespondtonodesthathaveneithersupplynordemand.Thenegativeright-handsidescorrespondtonodesthatarenetdestinations.Ingeneral,flowbalanceforagivennode,j,is:Totalflowoutofnodej–totalflowintonodej=supplyatnodejNegativesupplyisarequirement.Nodeswithnegativesupplyarecalleddestinations,
sinks,
or
demandpoints.Nodeswithpositivesupplyarecalledorigins,sources,orsupplypoints.Nodeswithzerosupplyarecalledtransshipmentpoints.4.AsmallmodelcanbeoptimizedwithSolver.IntegerOptimalSolutionsNetworkModelsACapacitatedTransshipmentModelTheintegerpropertyofthenetworkmodelcanbestatedthus:IfalltheRHStermsandarccapacities,uij,areintegersinthecapacitatedtransshipmentmodel,therewillalwaysbeaninteger-valuedoptimalsolutiontothismodel.NetworkModelsThestructureofthismodelmakesitpossibletoapplyspecialsolutionmethodsandsoftwarethatoptimizethemodelmuchmorequicklythanthemoregeneralsimplexmethodusedbySolver.EfficientSolutionProceduresNetworkModelsACapacitatedTransshipmentModelThismakesitpossibletooptimizeverylargescalenetworkmodelsquicklyandcheaply.NetworkModelsTheshortest-routemodelreferstoanetworkforwhicheacharc(i,j)hasanassociatednumber,cij,whichisinterpretedasthedistance(orcost,ortime)fromnodeitonodej.NetworkModelsAShortest-RouteModelArouteorpathbetweentwonodesisanysequenceofarcsconnectingthetwonodes.Theobjectiveistofindtheshortest(orleast-costorleast-time)routesfromaspecificnodetoeachoftheothernodesinthenetwork.NetworkModelsInthisexle,AaronDrunnermakesfrequentwinedeliveriesto7differentsites:874H12347651611213323Notethatthearcsareundirected(flowispermittedineitherdirection).Distancebetweennodes.HomeBaseThegoalistominimizeoverallcostsbymakingsurethatanyfuturedeliverytoanygivensiteismadealongtheshortestroutetothatsite.ThegoalistominimizeoverallcostsbyfindingtheshortestroutefromnodeHtoanyoftheother7nodes.Notethatinthismodel,thetaskistofindanoptimalroute,notoptimalxij’s.NetworkModelsInthisexle,MichaelCarrisresponsibleforobtainingahighspeedprintingpressforhisnewspapercompany.NetworkModelsAnEquipmentReplacementModelInagivenyearhemustchoosebetweenpurchasing:NewPrintingPressOldPrintingPresshighannual
acquisitioncostlowinitial
maintenancecostnoannual
acquisitioncosthighinitial
maintenancecostNetworkModelsAssumea4-yeartimehorizon.Let:cijdenotethecostofbuyingnewequipment
atthebeginningofyeari,i=1,2,3,4
andmaintainingittothebeginningofyear
j,j=2,3,4,5Threealternativefeasiblepoliciesare:1.Buyingnewequipmentatthebeginningof
eachyear.Total(acquisition+mainten
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 存量房買賣居間合同書
- 地坪夯實(shí)施工方案
- 活動(dòng)預(yù)算及支出明細(xì)報(bào)表
- 中介房屋買賣三方合同
- 慈溪車庫(kù)地坪施工方案
- 防機(jī)械傷害專項(xiàng)排查實(shí)施方案
- 重慶專業(yè)固銹底漆施工方案
- 成人專升本課程數(shù)學(xué)試卷
- 填埋場(chǎng)總體施工方案范本
- 地形地貌修復(fù)工程施工方案
- 勞務(wù)派遣勞務(wù)外包項(xiàng)目方案投標(biāo)文件(技術(shù)方案)
- 2025年安全員C證(專職安全員)考試題庫(kù)
- 地理-天一大聯(lián)考2025屆高三四省聯(lián)考(陜晉青寧)試題和解析
- 2025年廣州市公安局招考聘用交通輔警200人高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 貴州省貴陽(yáng)市2024-2025學(xué)年九年級(jí)上學(xué)期期末語(yǔ)文試題(含答案)
- 2024年吉安職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)附答案
- 2024年蘇州市職業(yè)大學(xué)單招職業(yè)適應(yīng)性測(cè)試題庫(kù)完整版
- 2024年廣州港集團(tuán)有限公司招聘筆試沖刺題(帶答案解析)
- 2024年國(guó)家社會(huì)科學(xué)基金年度項(xiàng)目申請(qǐng)書;2024年國(guó)家社會(huì)科學(xué)基金重大項(xiàng)目投標(biāo)書
- 小學(xué)生主題班會(huì) 傳承雷鋒精神 爭(zhēng)做時(shí)代新人 課件
- 產(chǎn)品尺寸檢測(cè)報(bào)告
評(píng)論
0/150
提交評(píng)論