2022-2023學(xué)年山東省濟(jì)南興濟(jì)中學(xué)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第1頁(yè)
2022-2023學(xué)年山東省濟(jì)南興濟(jì)中學(xué)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第2頁(yè)
2022-2023學(xué)年山東省濟(jì)南興濟(jì)中學(xué)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第3頁(yè)
2022-2023學(xué)年山東省濟(jì)南興濟(jì)中學(xué)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第4頁(yè)
2022-2023學(xué)年山東省濟(jì)南興濟(jì)中學(xué)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規(guī)作圖的痕跡,則下列結(jié)論錯(cuò)誤的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC2.6的絕對(duì)值是()A.6 B.﹣6 C. D.3.方程的解是A.3 B.2 C.1 D.04.如果m的倒數(shù)是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20185.老師隨機(jī)抽查了學(xué)生讀課外書冊(cè)數(shù)的情況,繪制成條形圖和不完整的扇形圖,其中條形圖被墨跡遮蓋了一部分,則條形圖中被遮蓋的數(shù)是()A.5 B.9 C.15 D.226.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE,點(diǎn)B經(jīng)過(guò)的路徑為弧BD,則圖中陰影部分的面積是()A. B. C.- D.7.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列結(jié)論正確的是()A.a(chǎn)<0 B.b2-4ac<0 C.當(dāng)-1<x<3時(shí),y>0 D.-=18.如圖,正六邊形ABCDEF中,P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長(zhǎng)度為何?()A.1 B.2 C.2﹣2 D.4﹣29.如圖,平行四邊形ABCD中,E,F(xiàn)分別在CD、BC的延長(zhǎng)線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長(zhǎng)為()A. B. C.1 D.10.已知某校女子田徑隊(duì)23人年齡的平均數(shù)和中位數(shù)都是13歲,但是后來(lái)發(fā)現(xiàn)其中一位同學(xué)的年齡登記錯(cuò)誤,將14歲寫成15歲,經(jīng)重新計(jì)算后,正確的平均數(shù)為a歲,中位數(shù)為b歲,則下列結(jié)論中正確的是()A.a(chǎn)<13,b=13B.a(chǎn)<13,b<13C.a(chǎn)>13,b<13D.a(chǎn)>13,b=13二、填空題(共7小題,每小題3分,滿分21分)11.已知扇形AOB的半徑OA=4,圓心角為90°,則扇形AOB的面積為_________.12.如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,4),則點(diǎn)B4的坐標(biāo)為_____,點(diǎn)B2017的坐標(biāo)為_____.13.如圖,在矩形ABCD中,AD=5,AB=8,點(diǎn)E為射線DC上一個(gè)動(dòng)點(diǎn),把△ADE沿直線AE折疊,當(dāng)點(diǎn)D的對(duì)應(yīng)點(diǎn)F剛好落在線段AB的垂直平分線上時(shí),則DE的長(zhǎng)為_____.14.拋物線y=x2﹣4x+與x軸的一個(gè)交點(diǎn)的坐標(biāo)為(1,0),則此拋物線與x軸的另一個(gè)交點(diǎn)的坐標(biāo)是______.15.將6本相同厚度的書疊起來(lái),它們的高度是9厘米.如果將這樣相同厚度的書疊起來(lái)的高度是42厘米,那么這些書有_____本.16.如圖,在邊長(zhǎng)為6的菱形ABCD中,分別以各頂點(diǎn)為圓心,以邊長(zhǎng)的一半為半徑,在菱形內(nèi)作四條圓弧,則圖中陰影部分的周長(zhǎng)是___結(jié)果保留17.新定義[a,b]為一次函數(shù)(其中a≠0,且a,b為實(shí)數(shù))的“關(guān)聯(lián)數(shù)”,若“關(guān)聯(lián)數(shù)”[3,m+2]所對(duì)應(yīng)的一次函數(shù)是正比例函數(shù),則關(guān)于x的方程1x-1+1三、解答題(共7小題,滿分69分)18.(10分)趙亮同學(xué)想利用影長(zhǎng)測(cè)量學(xué)校旗桿的高度,如圖,他在某一時(shí)刻立1米長(zhǎng)的標(biāo)桿測(cè)得其影長(zhǎng)為1.2米,同時(shí)旗桿的投影一部分在地面上,另一部分在某一建筑的墻上,分別測(cè)得其長(zhǎng)度為9.6米和2米,則學(xué)校旗桿的高度為________米.19.(5分)如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn),(1)求證:△ACE≌△BCD;(2)若DE=13,BD=12,求線段AB的長(zhǎng).20.(8分)校園空地上有一面墻,長(zhǎng)度為20m,用長(zhǎng)為32m的籬笆和這面墻圍成一個(gè)矩形花圃,如圖所示.能圍成面積是126m2的矩形花圃嗎?若能,請(qǐng)舉例說(shuō)明;若不能,請(qǐng)說(shuō)明理由.若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請(qǐng)說(shuō)明理由.21.(10分)某景區(qū)商店銷售一種紀(jì)念品,每件的進(jìn)貨價(jià)為40元.經(jīng)市場(chǎng)調(diào)研,當(dāng)該紀(jì)念品每件的銷售價(jià)為50元時(shí),每天可銷售200件;當(dāng)每件的銷售價(jià)每增加1元,每天的銷售數(shù)量將減少10件.當(dāng)每件的銷售價(jià)為52元時(shí),該紀(jì)念品每天的銷售數(shù)量為件;當(dāng)每件的銷售價(jià)x為多少時(shí),銷售該紀(jì)念品每天獲得的利潤(rùn)y最大?并求出最大利潤(rùn).22.(10分)如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數(shù);求證:AE是⊙O的切線;當(dāng)BC=4時(shí),求劣弧AC的長(zhǎng).23.(12分)如圖,在△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BF平分∠ABC交AD于點(diǎn)E,交AC于點(diǎn)F,求證:AE=AF.24.(14分)問(wèn)題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,連接AD、BE,求的值;(2)如圖2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,過(guò)點(diǎn)A作AM⊥AB,點(diǎn)P是射線AM上一動(dòng)點(diǎn),連接CP,做CQ⊥CP交線段AB于點(diǎn)Q,連接PQ,求PQ的最小值;(3)李師傅準(zhǔn)備加工一個(gè)四邊形零件,如圖3,這個(gè)零件的示意圖為四邊形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,請(qǐng)你幫李師傅求出這個(gè)零件的對(duì)角線BD的最大值.圖3

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

解:根據(jù)圖中尺規(guī)作圖的痕跡,可得∠DAE=∠B,故A選項(xiàng)正確,∴AE∥BC,故C選項(xiàng)正確,∴∠EAC=∠C,故B選項(xiàng)正確,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D選項(xiàng)錯(cuò)誤,故選D.【點(diǎn)睛】本題考查作圖—復(fù)雜作圖;平行線的判定與性質(zhì);三角形的外角性質(zhì).2、A【解析】試題分析:1是正數(shù),絕對(duì)值是它本身1.故選A.考點(diǎn):絕對(duì)值.3、A【解析】試題分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經(jīng)檢驗(yàn)x=3是分式方程的解.故選A.4、A【解析】

因?yàn)閮蓚€(gè)數(shù)相乘之積為1,則這兩個(gè)數(shù)互為倒數(shù),如果m的倒數(shù)是﹣1,則m=-1,然后再代入m2018計(jì)算即可.【詳解】因?yàn)閙的倒數(shù)是﹣1,所以m=-1,所以m2018=(-1)2018=1,故選A.【點(diǎn)睛】本題主要考查倒數(shù)的概念和乘方運(yùn)算,解決本題的關(guān)鍵是要熟練掌握倒數(shù)的概念和乘方運(yùn)算法則.5、B【解析】

條形統(tǒng)計(jì)圖是用線段長(zhǎng)度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長(zhǎng)短不同的矩形直條,然后按順序把這些直條排列起來(lái).扇形統(tǒng)計(jì)圖是用整個(gè)圓表示總數(shù)用圓內(nèi)各個(gè)扇形的大小表示各部分?jǐn)?shù)量占總數(shù)的百分?jǐn)?shù).通過(guò)扇形統(tǒng)計(jì)圖可以很清楚地表示出各部分?jǐn)?shù)量同總數(shù)之間的關(guān)系.用整個(gè)圓的面積表示總數(shù)(單位1),用圓的扇形面積表示各部分占總數(shù)的百分?jǐn)?shù).【詳解】課外書總?cè)藬?shù):6÷25%=24(人),看5冊(cè)的人數(shù):24﹣5﹣6﹣4=9(人),故選B.【點(diǎn)睛】本題考查了統(tǒng)計(jì)圖與概率,熟練掌握條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖是解題的關(guān)鍵.6、A【解析】

先根據(jù)勾股定理得到AB=,再根據(jù)扇形的面積公式計(jì)算出S扇形ABD,由旋轉(zhuǎn)的性質(zhì)得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【詳解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD?S△ABC=S扇形ABD=,故選A.【點(diǎn)睛】本題考查扇形面積計(jì)算,熟記扇形面積公式,采用作差法計(jì)算面積是解題的關(guān)鍵.7、D【解析】試題分析:根據(jù)二次函數(shù)的圖象和性質(zhì)進(jìn)行判斷即可.解:∵拋物線開口向上,∴∴A選項(xiàng)錯(cuò)誤,∵拋物線與x軸有兩個(gè)交點(diǎn),∴∴B選項(xiàng)錯(cuò)誤,由圖象可知,當(dāng)-1<x<3時(shí),y<0∴C選項(xiàng)錯(cuò)誤,由拋物線的軸對(duì)稱性及與x軸的兩個(gè)交點(diǎn)分別為(-1,0)和(3,0)可知對(duì)稱軸為即-=1,∴D選項(xiàng)正確,故選D.8、C【解析】

先判斷出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面積的兩種算法即可求出PG,然后計(jì)算出PQ即可.【詳解】解:如圖,連接PF,QF,PC,QC∵P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心,∴PF是∠AFC的角平分線,F(xiàn)Q是∠CFE的角平分線,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等邊三角形,∴PQ=2PG;易得△ACF≌△ECF,且內(nèi)角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,過(guò)點(diǎn)P作PM⊥AF,PN⊥AC,PQ交CF于G,∵點(diǎn)P是△ACF的內(nèi)心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故選C.【點(diǎn)睛】本題是三角形的內(nèi)切圓與內(nèi)心,主要考查了三角形的內(nèi)心的特點(diǎn),三角形的全等,解本題的關(guān)鍵是知道三角形的內(nèi)心的意義.9、B【解析】

由平行四邊形性質(zhì)得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數(shù)求出CF長(zhǎng),再用勾股定理CE,即可得出AB的長(zhǎng).【詳解】∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE,∴AB=DE=CD,即D為CE中點(diǎn),∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根據(jù)勾股定理得,CE==,∴AB=CE=,故選B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)和判定、平行線的性質(zhì),三角函數(shù)的運(yùn)用;熟練掌握平行四邊形的性質(zhì),勾股定理,判斷出AB=CE是解決問(wèn)題的關(guān)鍵.10、A【解析】試題解析:∵原來(lái)的平均數(shù)是13歲,∴13×23=299(歲),∴正確的平均數(shù)a=299-12∵原來(lái)的中位數(shù)13歲,將14歲寫成15歲,最中間的數(shù)還是13歲,∴b=13;故選A.考點(diǎn):1.平均數(shù);2.中位數(shù).二、填空題(共7小題,每小題3分,滿分21分)11、4π【解析】根據(jù)扇形的面積公式可得:扇形AOB的面積為,故答案為4π.12、(20,4)(10086,0)【解析】

首先利用勾股定理得出AB的長(zhǎng),進(jìn)而得出三角形的周長(zhǎng),進(jìn)而求出B2,B4的橫坐標(biāo),進(jìn)而得出變化規(guī)律,即可得出答案.【詳解】解:由題意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的橫坐標(biāo)為:10,B4的橫坐標(biāo)為:2×10=20,B2016的橫坐標(biāo)為:×10=1.∵B2C2=B4C4=OB=4,∴點(diǎn)B4的坐標(biāo)為(20,4),∴B2017的橫坐標(biāo)為1++=10086,縱坐標(biāo)為0,∴點(diǎn)B2017的坐標(biāo)為:(10086,0).故答案為(20,4)、(10086,0).【點(diǎn)睛】本題主要考查了點(diǎn)的坐標(biāo)以及圖形變化類,根據(jù)題意得出B點(diǎn)橫坐標(biāo)變化規(guī)律是解題的關(guān)鍵.13、或10【解析】

試題分析:根據(jù)題意,可分為E點(diǎn)在DC上和E在DC的延長(zhǎng)線上,兩種情況求解即可:如圖①,當(dāng)點(diǎn)E在DC上時(shí),點(diǎn)D的對(duì)應(yīng)點(diǎn)F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=2,設(shè)FE=x,則FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如圖②,當(dāng),所以FQ=點(diǎn)E在DG的延長(zhǎng)線上時(shí),點(diǎn)D的對(duì)應(yīng)點(diǎn)F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=8,設(shè)DE=x,則FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,綜上所述,DE=或10.14、(3,0)【解析】

把交點(diǎn)坐標(biāo)代入拋物線解析式求m的值,再令y=0解一元二次方程求另一交點(diǎn)的橫坐標(biāo).【詳解】把點(diǎn)(1,0)代入拋物線y=x2-4x+中,得m=6,所以,原方程為y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴拋物線與x軸的另一個(gè)交點(diǎn)的坐標(biāo)是(3,0).故答案為(3,0).【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo)與拋物線解析式的關(guān)系,拋物線與x軸交點(diǎn)坐標(biāo)的求法.本題也可以用根與系數(shù)關(guān)系直接求解.15、1.【解析】

因?yàn)橐槐緯暮穸仁且欢ǖ?,根?jù)本數(shù)與書的高度成正比列比例式即可得到結(jié)論.【詳解】設(shè)這些書有x本,

由題意得,,

解得:x=1,

答:這些書有1本.

故答案為:1.【點(diǎn)睛】本題考查了比例的性質(zhì),正確的列出比例式是解題的關(guān)鍵.16、【解析】

直接利用已知得出所有的弧的半徑為3,所有圓心角的和為:菱形的內(nèi)角和,即可得出答案.【詳解】由題意可得:所有的弧的半徑為3,所有圓心角的和為:菱形的內(nèi)角和,故圖中陰影部分的周長(zhǎng)是:6π.故答案為6π.【點(diǎn)睛】本題考查了弧長(zhǎng)的計(jì)算以及菱形的性質(zhì),正確得出圓心角是解題的關(guān)鍵.17、53【解析】試題分析:根據(jù)“關(guān)聯(lián)數(shù)”[3,m+2]所對(duì)應(yīng)的一次函數(shù)是正比例函數(shù),得到y(tǒng)=3x+m+2為正比例函數(shù),即m+2=0,解得:m=-2,則分式方程為1x-1去分母得:2-(x-1)=2(x-1),去括號(hào)得:2-x+1=2x-2,解得:x=53經(jīng)檢驗(yàn)x=53考點(diǎn):1.一次函數(shù)的定義;2.解分式方程;3.正比例函數(shù)的定義.三、解答題(共7小題,滿分69分)18、10【解析】試題分析:根據(jù)相似的性質(zhì)可得:1:1.2=x:9.6,則x=8,則旗桿的高度為8+2=10米.考點(diǎn):相似的應(yīng)用19、(3)證明見解析;(3)AB=3.【解析】

(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根據(jù)SAS推出△ACE≌△BCD即可;(3)求出AD=5,根據(jù)全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【詳解】證明:(3)如圖,∵△ACB與△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,則∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD==5,∴AB=AD+BD=33+5=3.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),也考查了等腰直角三角形的性質(zhì)和勾股定理的應(yīng)用.考點(diǎn):3.全等三角形的判定與性質(zhì);3.等腰直角三角形.20、(1)長(zhǎng)為18米、寬為7米或長(zhǎng)為14米、寬為9米;(1)若籬笆再增加4m,圍成的矩形花圃面積不能達(dá)到172m1.【解析】

(1)假設(shè)能,設(shè)AB的長(zhǎng)度為x米,則BC的長(zhǎng)度為(31﹣1x)米,再根據(jù)矩形面積公式列方程求解即可得到答案.(1)假設(shè)能,設(shè)AB的長(zhǎng)度為y米,則BC的長(zhǎng)度為(36﹣1y)米,再根據(jù)矩形面積公式列方程,求得方程無(wú)解,即假設(shè)不成立.【詳解】(1)假設(shè)能,設(shè)AB的長(zhǎng)度為x米,則BC的長(zhǎng)度為(31﹣1x)米,根據(jù)題意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假設(shè)成立,即長(zhǎng)為18米、寬為7米或長(zhǎng)為14米、寬為9米.(1)假設(shè)能,設(shè)AB的長(zhǎng)度為y米,則BC的長(zhǎng)度為(36﹣1y)米,根據(jù)題意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴該方程無(wú)解,∴假設(shè)不成立,即若籬笆再增加4m,圍成的矩形花圃面積不能達(dá)到172m1.21、(1)180;(2)每件銷售價(jià)為55元時(shí),獲得最大利潤(rùn);最大利潤(rùn)為2250元.【解析】分析:(1)根據(jù)“當(dāng)每件的銷售價(jià)每增加1元,每天的銷售數(shù)量將減少10件”,即可解答;(2)根據(jù)等量關(guān)系“利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷量”列出函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì),即可解答.詳解:(1)由題意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案為180;(2)由題意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件銷售價(jià)為55元時(shí),獲得最大利潤(rùn);最大利潤(rùn)為2250元.點(diǎn)睛:此題主要考查了二次函數(shù)的應(yīng)用,根據(jù)已知得出二次函數(shù)的最值是中考中考查重點(diǎn),同學(xué)們應(yīng)重點(diǎn)掌握.22、(1)60°;(2)證明略;(3)【解析】

(1)根據(jù)∠ABC與∠D都是劣弧AC所對(duì)的圓周角,利用圓周角定理可證出∠ABC=∠D=60°;

(2)根據(jù)AB是⊙O的直徑,利用直徑所對(duì)的圓周角是直角得到∠ACB=90°,結(jié)合∠ABC=60°求得∠BAC=30°,從而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切線;

(3)連結(jié)OC,證出△OBC是等邊三角形,算出∠BOC=60°且⊙O的半徑等于4,可得劣弧AC所對(duì)的圓心角∠AOC=120°,再由弧長(zhǎng)公式加以計(jì)算,可得劣弧AC的長(zhǎng).【詳解】(1)∵∠ABC與∠D都是弧AC所對(duì)的圓周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直徑,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切線;(3)如圖,連接OC,∵OB=OC,∠ABC=60°,∴△OBC是等邊三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的長(zhǎng)為==.【點(diǎn)睛】本題考查了切線長(zhǎng)定理及弧長(zhǎng)公式,熟練掌握定理及公式是解題的關(guān)鍵.23、見解析【解析】

根據(jù)角平分線的定義可得∠ABF=∠CBF,由已知條件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根據(jù)余角的性質(zhì)可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可證得結(jié)論.【詳解】∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【點(diǎn)睛】本題考查了等

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論