版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Section1.5ContinuousFunctionsContinuousFunction[連續(xù)函數(shù)]andDiscontinuousPoints[間斷點(diǎn)]2Definition
ConsiderafunctionWesayf(x)iscontinuous[連續(xù)]atx0ifandonlyif
(1)f(x)iswelldefined;(2)Otherwise,wesayf(x)isdiscontinuous[間斷]atx0.Anotherwaytoexpressthedefinitionofcontinuityatx0is:TheContinuityofFunction3iscalledtheincrementofthefunctionalvalue[函數(shù)值增量],orsimplytheincrementofthe
function[函數(shù)增量].Supposethatafunctiony=f(x)isdefinedinWhentheiscalledtheincrementoftheindependentvariable[自變量增量],andYXx0xf(x)f(x0)independentvariablechangesfromx0tox,thecorrespondingfunctionalvaluewillbechangedfromf(x0)tof(x).ThenTheContinuityofFunction4(1)f(x)iswelldefined;(2)f(x)iscontinuousatx0.f(x)iscontinuous[連續(xù)]atx0ifandonlyif
TheContinuityofFunction5TheoremDefinition
(Leftandrightsidecontinuity)
Letx0
D(f),wesayf(x)isleftcontinuous[左連續(xù)]atx0if
andf(x)isrightcontinuous[右連續(xù)]atx0ifSupposethatafunctiony=f(x)isdefinedinthenTheContinuityofFunction6Note
Iff(x)iscontinuousateverypointofanopeninterval
(a,b)thenf(x)issaidtobecontinuousintheinterval(a,b);
iff(x)iscontinuousintheopeninterval(a,b)andiscontinuousfromtherightatpointx=aandisalsocontinuousfromtheleftatx=b,thenf(x)issaidtobecontinuousontheclosedinterval[a,b];iff(x)iscontinuousinanintervalI,thenitiscalledacontinuousfunctioninthisintervalI;iscalledacontinuousfunction.
ifIisjustthedomainofdefinitionofthisfunctionthenf(x)TheContinuityofFunction7Thegraphofacontinuousfunctionisacontinuouscurve.Note
Weusethesymbol
toexpressthesetofall,thatiscontinuousfunctionsintheintervalTheContinuityofFunction8Example
Prove
Proof:
byatrigonometricidentitywehavethenHence
iscontinuousatSince,
isarbitrarypointwehaveFheinterval.ForanyTheContinuityofFunction9Example
Prove
doesnotcontinuousat.Since
andFinish.Proofwehavetheconclusion.TheContinuityofFunction10Example
Determinetheconstantsaandbsuchthatthefollowingfunctioniscontinuousatx=1:Solution:SinceandFromthedefinitionofcontinuity,wecanseethatiff(x)iscontinuousatx=1,thenitmustsatisfywehaveItiseasytoobtaina=2,b=1.Finish.TheClassificationofDiscontinuousPoints11Ifafunctioniscontinuousatx=x0,thenitmustsatisfyallofthefollowingthreeconditions:
and
bothexistandareequal;;
isdefinedat
exists,thatis,.Hence,ifanyoneoftheseconditionsisnotsatisfiedthenthefunctionfisdiscontinuousatx0.Apointatwhichafunctionisdiscontinuousiscalledadiscontinuouspoint[間斷點(diǎn)]ofthefunctionorpointofdiscontinuityofthefunction.TheClassificationofDiscontinuousPoints12FirstkindSecondKindThediscontinuouspointsoffunctioncanbedividedintotwotypes:
at
iscalledadiscontinuityofthefirstIftheleft-sidelimitandright-sidelimitofafunctionthenpointsarecalleddiscontinuityofthesecondkind[第二類間斷點(diǎn)].
bothexist,kind[第一類間斷點(diǎn)]ofthefunction;allotherdiscontinuousTheClassificationofDiscontinuousPoints13Example
Considerthecontinuityofthesignfunctionatx=0.Solution:Sinceandwehaveisadiscontinuityofthejumpdiscontinuouspoint[跳躍間斷點(diǎn)]firstkindofthesignfunction.TheClassificationofDiscontinuousPoints14Solution:Example
Considerthecontinuityofthefunctionat
x=0.Althoughthefunctionisnotdefinedatthepointx=0.isadiscontinuouspointofthefirstkind.ThusxyO1-11removablediscontinuouspoint[可去間斷點(diǎn)]TheClassificationofDiscontinuousPoints15Example
ConsiderthecontinuityofthefunctionatSolution:Sinceisadiscontinuouspointofthesecondkind.infinitediscontinuouspoint[無窮間斷點(diǎn)]TheClassificationofDiscontinuousPoints16Example
Considerthecontinuityofthefunction
atisadiscontinuouspointofthesecondkind.Solution:oscillatingdiscontinuouspoint[振蕩間斷點(diǎn)]Operationsoncontinuousfunctionsandthecontinuityofelementaryfunctions17Theorem
Supposethatthefunctionsfandgarebothcontinuousatx=x0.Then (2)
islocallyboundedat.,,()arealsocontinuousat(1);Theorem
Supposethatthefunctioniscomposedfromthefunctions
and,Ifgiscontinuousat
,
and
fiscontinuousatthen
iscontinuousat.Operationsoncontinuousfunctionsandthecontinuityofelementaryfunctions18Operationsoncontinuousfunctionsandthecontinuityofelementaryfunctions19Example
Provethecontinuityofthetrigonometricfunctions.ExampleProvethecontinuityoftheinversetrigonometricfunctions.Example
Provethecontinuityoftheexponentialfunction.Example
Provethecontinuityofthelogarithmicfunction.Example
Provethecontinuityofthepowerfunction.Alltheelementaryfunctionsarecontinuousintheirdomains.Operationsoncontinuousfunctionsandthecontinuityofelementaryfunctions20Example
InvestigatethecontinuityofthefunctionSolution:
except
and.
iscontinuousintheintervalItisclearthatForthepointsince
isajumpdiscontinuouspoint.,Operationsoncontinuousfunctionsandthecontinuityofelementaryfunctions21Solution:(continued)
since
isadiscontinuouspointofsecondkind.Forthepoint,Example
InvestigatethecontinuityofthefunctionOperationsoncontinuousfunctionsandthecontinuityofelementaryfunctions22Solution:(continued)
Example
InvestigatethecontinuityofthefunctionOperationsoncontinuousfunctionsandthecontinuityofelementaryfunctions23Note
Bythedefinitionofcontinuityandthecompositeoperationrulewehave
Therefore,whenwecalculatethelimitofacontinuousfunction,theorderoftheoperationsbetweenthelimitandevaluationofthefunctionmaybeinterchanged.Operationsoncontinuousfunctionsandthecontinuityofelementaryfunctions24Proof:
canbethoughtofacompositefunctionby
andBythecontinuityof
andthecompositeoperationruleforthelimitExample
ProveSince.wehaveOperationsoncontinuousfunctionsandthecontinuityofelementaryfunctions25Proof:,then,andBythecompositeoperationruleandExample
Prove
as,weobtain
LetOperationsoncontinuousfunctionsandthecontinuityofelementaryfunctions26Proof:Then,and
asHence,SothatExample
Prove,whereLetOperationsoncontinuousfunctionsandthecontinuityofelementaryfunctions27Thelimitofpower-exponentialfunctionsExample
FindSolution:SinceandwehaveFinish.Operationsoncontinuousfunctionsandthecontinuityofelementaryfunctions28Thelimitofpower-exponentialfunctionsExample
FindSolution:SinceandwehaveFinish.Propertiesofcontinuousfunctionsonaclosedinterval29Propertiesofcontinuousfunctionsonaclosedinterval30Proof:wehave,Particularly,wechoose,weobtainthat ,Again,since,wehaveBythelasttheorem,weknownSince,,
suchthat,..,,suchthatPropertiesofcontinuousfunctionsonaclosedinterval31IfweletthenwehaveProof(continued):Finish.Propertiesofcontinuousfunctionsonaclosedinterval32Propertiesofcontinuousfunctionsonaclosedinterval33Propertiesofcontinuousfunctionsonaclosedinterval34Example
Provethatequation
haveatleast
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)互聯(lián)對(duì)全球化經(jīng)濟(jì)的影響力
- 愛洗手的好寶寶健康活動(dòng)
- 河南省2024九年級(jí)語文上冊(cè)第五單元19懷疑與學(xué)問課件新人教版
- 紅細(xì)胞增多癥的診斷與治療
- 結(jié)核骨影像鑒別病
- 吉林省2024七年級(jí)數(shù)學(xué)上冊(cè)第2章整式及其加減2.4整式的加減4.整式的加減課件新版華東師大版
- 黃瓜生長(zhǎng)期枯萎病與防治
- 骨傷科的治療方法
- 氧化碳制取的研究的說課稿
- 紅樓夢(mèng)說課稿
- 智慧校園匯報(bào)材料課件
- 2024年遼寧盤錦國(guó)發(fā)實(shí)業(yè)有限公司招聘筆試參考題庫附帶答案詳解
- 樓蘭古國(guó)完整
- 青茶專業(yè)知識(shí)
- 加大技術(shù)研發(fā)投入推動(dòng)技術(shù)創(chuàng)新
- 醫(yī)院管理學(xué)教學(xué)完整版
- 監(jiān)理職業(yè)生涯規(guī)劃總結(jié)報(bào)告
- 老人艾滋病防控知識(shí)講座
- 基因突變的發(fā)生和表達(dá)的實(shí)驗(yàn)探究
- 化工原理實(shí)驗(yàn)課后思考題及化工原理實(shí)驗(yàn)思考題
- 三菱伺服MR-J4中文說明書
評(píng)論
0/150
提交評(píng)論