《高數(shù)雙語》課件section 3-3_第1頁
《高數(shù)雙語》課件section 3-3_第2頁
《高數(shù)雙語》課件section 3-3_第3頁
《高數(shù)雙語》課件section 3-3_第4頁
《高數(shù)雙語》課件section 3-3_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Section3.3Taylor’sTheoremAndItsApplications2Overviewvariablexin,where

isafixedpoint,canbecalculatedsimplyThisapproximationissimpleandiseasilyused,butithaslowprecision,since

andtheapproximationis,andalsothisInChapter2,wehadseenthatthevalueofasmoothfunctionforsomebyapproximation.thedifferencebetweentheaccuratevalueofjustainfinitesimalofhigherorderwithrespectto

isverysmall.approximationcanonlybeusedinthecaseofInthislecture,wewillformanewtechniquetoapproximatethevalueofafunctionwithhigherorderofcomputationerror.3Taylor’sTheoremisusingaline,,toapproximateacurve.Itcanbefindasuitablepolynomialsofdegreetoapproximateagivencurveoffunction,suchthattheapproximateerroris.Thatis Ifwecandoso,whatarethecoefficientsof,andhowcanweobtainItiseasytoseethattheapproximation,,infact,imagedthatifweuseasuitablecurvetoapproximatecurve,theapplicablewillbewiderandtheprecisionwillbeimproved.Itseemsnaturethatwechosethepolynomialsasthesuitablecurve.aninfinitesimalofhigherorderwithrespectto.them?Thenthequestionbecomesto,wetryto4Taylor’sTheoremTaylorPolynomialPeanoremainderTaylorcoefficientsTaylor,

Brook

(1685-1731)EnglishmathematicianTheorem

(Taylor’stheoremwithPeanoremainder)Supposethatthefunctionfisdifferentiableofordernatthepointx0.Then5Taylor’sTheoremTaylor,

Brook

(1685-1731)Englishmathematician

LagrangeremainderLagrangeFormula6Taylor’sTheoremComparetothePeanoremainder,theLagrangeremaindercanbeusedtoestimatetheerrormoreprecisely.

suchthat,,Infact,ifthefunctionfisdifferentiableofordern+1on[a,b],andthereisaconstantthenWecanseefromtheinequalitythat

as.Thismeansthat

toapproximateadifferentiablefunction,theerrormaybemakearbitrarilyifweutilizethepolynomialofanyorderinthewholeintervalsmall.

istakenlargeenough.

while7Taylor’sTheoremColinMaclaurin(1698-1746)Scottishmathematician

Ifwelet,thentheLagrangeformulabecomesandthisformulaiscalledtheMaclaurinformula.8MaclaurinFormulaeforSomeElementaryFunctionsMaclaurinformulafortheexponentialfunctionSincewehavewhere

and.

and,9MaclaurinFormulaeforSomeElementaryFunctionsMaclaurinformulafor

andLet,since

or,thenwhere

and.wehave10MaclaurinFormulaeforSomeElementaryFunctionsSimilarly,wehaveMaclaurinformulafor

andwhere

and.11MaclaurinFormulaeforSomeElementaryFunctionsMaclaurinformulaforWehadknownthatsoThusWhere

and.12MaclaurinFormulaeforSomeElementaryFunctionsMaclaurinformulaforWehadknownthatsoThusWhere

and.13SomeApplicationsofTaylor’sTheorem(1)Approximatecalculations14SomeApplicationsofTaylor’sTheorem(1)Approximatecalculations15SomeApplicationsofTaylor’sTheorem(1)Approximatecalculations16SomeApplicationsofTaylor’sTheorem(1)Approximatecalculations17SomeApplicationsofTaylor’sTheorem(1)Approximatecalculations18SomeApplicationsofTaylor’sTheorem(1)Approximatecalculations,wehavesince,soItmaybeseenthat,as,whichmeansthat

isapproximated

andestimationoftheerror.Example

ApproximatecalculationofthevalueofSolution

inthemaclaurinformulaeforLetbytheapproximationformula:TheerrorcanbemadearbitrarilysmallaslongifFinish.

istakenlargeenough.19SomeApplicationsofTaylor’sTheorem(1)ApproximatecalculationsSincetheerrorofapproximationofTayloriswhen

liesbetweenthepoints

and.Since

and

forall,weknowthattheerrorintheapproximationisnomorethan.,weonlyneed.InordertohaveSolution:20SomeApplicationsofTaylor’sTheorem(1)ApproximatecalculationsExample

Findanapproximatevalueofarealrootfortheequationontheparameter;wedenotethisrootby.Thisfunctioncanbeseen

isdifferentiabletoanyorder.Thus,byTaylor,weobtainwhere

isaverysmallparameter.Itiseasytoprovethatthisequationhasarealrootanditisdependentbythegivenfunction.asanimplicitfunctiondeterminedItcanbeprovethattheimplicitfunctionformulaandtakingforinstance,.Solution21SomeApplicationsofTaylor’sTheorem(1)ApproximatecalculationsExample

Findanapproximatevalueofarealrootfortheequationwhere

isaverysmallparameter.Solution(continued),wehave,thatisWetakedifferenttoeachsideofthegiven,wehaveWewilldeterminethecoefficientsinthelastequation.TakeequationwithrespecttoDifferentiatingbothsidesofthegivenequationagain,wehave sothat.22SomeApplicationsofTaylor’sTheoremSothat(1)ApproximatecalculationsExample

Findanapproximatevalueofarealrootfortheequationwhere

isaverysmallparameter.Solution(continued)therefore,theseconddegreeapproximateoftherealrootis

.Finish.23SomeApplicationsofTaylor’sTheorem(2)FindinglimitsSolution,wehaveFinish.Example

Find

ByMaclaurinformulawithPeanoremainderto24SomeApplicationsofTaylor’sTheorem(3)Provinginequalities

ProofBytheMaclaurinformulawehave,liesbet

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論