




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Section3.3Taylor’sTheoremAndItsApplications2Overviewvariablexin,where
isafixedpoint,canbecalculatedsimplyThisapproximationissimpleandiseasilyused,butithaslowprecision,since
andtheapproximationis,andalsothisInChapter2,wehadseenthatthevalueofasmoothfunctionforsomebyapproximation.thedifferencebetweentheaccuratevalueofjustainfinitesimalofhigherorderwithrespectto
isverysmall.approximationcanonlybeusedinthecaseofInthislecture,wewillformanewtechniquetoapproximatethevalueofafunctionwithhigherorderofcomputationerror.3Taylor’sTheoremisusingaline,,toapproximateacurve.Itcanbefindasuitablepolynomialsofdegreetoapproximateagivencurveoffunction,suchthattheapproximateerroris.Thatis Ifwecandoso,whatarethecoefficientsof,andhowcanweobtainItiseasytoseethattheapproximation,,infact,imagedthatifweuseasuitablecurvetoapproximatecurve,theapplicablewillbewiderandtheprecisionwillbeimproved.Itseemsnaturethatwechosethepolynomialsasthesuitablecurve.aninfinitesimalofhigherorderwithrespectto.them?Thenthequestionbecomesto,wetryto4Taylor’sTheoremTaylorPolynomialPeanoremainderTaylorcoefficientsTaylor,
Brook
(1685-1731)EnglishmathematicianTheorem
(Taylor’stheoremwithPeanoremainder)Supposethatthefunctionfisdifferentiableofordernatthepointx0.Then5Taylor’sTheoremTaylor,
Brook
(1685-1731)Englishmathematician
LagrangeremainderLagrangeFormula6Taylor’sTheoremComparetothePeanoremainder,theLagrangeremaindercanbeusedtoestimatetheerrormoreprecisely.
suchthat,,Infact,ifthefunctionfisdifferentiableofordern+1on[a,b],andthereisaconstantthenWecanseefromtheinequalitythat
as.Thismeansthat
toapproximateadifferentiablefunction,theerrormaybemakearbitrarilyifweutilizethepolynomialofanyorderinthewholeintervalsmall.
istakenlargeenough.
while7Taylor’sTheoremColinMaclaurin(1698-1746)Scottishmathematician
Ifwelet,thentheLagrangeformulabecomesandthisformulaiscalledtheMaclaurinformula.8MaclaurinFormulaeforSomeElementaryFunctionsMaclaurinformulafortheexponentialfunctionSincewehavewhere
and.
and,9MaclaurinFormulaeforSomeElementaryFunctionsMaclaurinformulafor
andLet,since
or,thenwhere
and.wehave10MaclaurinFormulaeforSomeElementaryFunctionsSimilarly,wehaveMaclaurinformulafor
andwhere
and.11MaclaurinFormulaeforSomeElementaryFunctionsMaclaurinformulaforWehadknownthatsoThusWhere
and.12MaclaurinFormulaeforSomeElementaryFunctionsMaclaurinformulaforWehadknownthatsoThusWhere
and.13SomeApplicationsofTaylor’sTheorem(1)Approximatecalculations14SomeApplicationsofTaylor’sTheorem(1)Approximatecalculations15SomeApplicationsofTaylor’sTheorem(1)Approximatecalculations16SomeApplicationsofTaylor’sTheorem(1)Approximatecalculations17SomeApplicationsofTaylor’sTheorem(1)Approximatecalculations18SomeApplicationsofTaylor’sTheorem(1)Approximatecalculations,wehavesince,soItmaybeseenthat,as,whichmeansthat
isapproximated
andestimationoftheerror.Example
ApproximatecalculationofthevalueofSolution
inthemaclaurinformulaeforLetbytheapproximationformula:TheerrorcanbemadearbitrarilysmallaslongifFinish.
istakenlargeenough.19SomeApplicationsofTaylor’sTheorem(1)ApproximatecalculationsSincetheerrorofapproximationofTayloriswhen
liesbetweenthepoints
and.Since
and
forall,weknowthattheerrorintheapproximationisnomorethan.,weonlyneed.InordertohaveSolution:20SomeApplicationsofTaylor’sTheorem(1)ApproximatecalculationsExample
Findanapproximatevalueofarealrootfortheequationontheparameter;wedenotethisrootby.Thisfunctioncanbeseen
isdifferentiabletoanyorder.Thus,byTaylor,weobtainwhere
isaverysmallparameter.Itiseasytoprovethatthisequationhasarealrootanditisdependentbythegivenfunction.asanimplicitfunctiondeterminedItcanbeprovethattheimplicitfunctionformulaandtakingforinstance,.Solution21SomeApplicationsofTaylor’sTheorem(1)ApproximatecalculationsExample
Findanapproximatevalueofarealrootfortheequationwhere
isaverysmallparameter.Solution(continued),wehave,thatisWetakedifferenttoeachsideofthegiven,wehaveWewilldeterminethecoefficientsinthelastequation.TakeequationwithrespecttoDifferentiatingbothsidesofthegivenequationagain,wehave sothat.22SomeApplicationsofTaylor’sTheoremSothat(1)ApproximatecalculationsExample
Findanapproximatevalueofarealrootfortheequationwhere
isaverysmallparameter.Solution(continued)therefore,theseconddegreeapproximateoftherealrootis
.Finish.23SomeApplicationsofTaylor’sTheorem(2)FindinglimitsSolution,wehaveFinish.Example
Find
ByMaclaurinformulawithPeanoremainderto24SomeApplicationsofTaylor’sTheorem(3)Provinginequalities
ProofBytheMaclaurinformulawehave,liesbet
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 航運(yùn)代理合同樣本
- 鄭州租地種樹合同范本
- 種植與回收合同范本
- 圍墻工廠供貨合同范本
- 車輛報(bào)廢注銷合同范本
- 上門采樣合同范本
- 出售塔吊電梯合同范本
- 電梯鋼構(gòu)合同范本
- 江蘇省無錫市惠山區(qū)2024-2025學(xué)年八年級上學(xué)期1月期末考試數(shù)學(xué)試卷(含答案)
- 民用口罩合同范本
- 汽車吊起重吊裝方案-(范本)
- 房地產(chǎn)售樓部營銷中心開放活動(dòng)策劃方案
- 矩形的判定公開課公開課獲獎(jiǎng)?wù)n件百校聯(lián)賽一等獎(jiǎng)?wù)n件
- 醫(yī)療機(jī)構(gòu)消防安全突出火災(zāi)風(fēng)險(xiǎn)和檢查要點(diǎn)
- 焊接工程勞務(wù)分包
- 中國礦業(yè)大學(xué)《自然辯證法》2022-2023學(xué)年期末試卷
- 化工和危險(xiǎn)化學(xué)品重大隱患考試試題(后附答案)
- 人教版一年級數(shù)學(xué)下冊全冊單元測試卷及答案
- 常見皮膚病患兒的護(hù)理(兒科護(hù)理課件)
- (中級)高低壓電器及成套設(shè)備裝配工技能鑒定考試題庫(含答案)
- 邢臺2024年河北邢臺學(xué)院高層次人才引進(jìn)30人筆試歷年典型考題及考點(diǎn)附答案解析
評論
0/150
提交評論