數(shù)學(xué)集合的知識(shí)點(diǎn)精編17篇_第1頁(yè)
數(shù)學(xué)集合的知識(shí)點(diǎn)精編17篇_第2頁(yè)
數(shù)學(xué)集合的知識(shí)點(diǎn)精編17篇_第3頁(yè)
數(shù)學(xué)集合的知識(shí)點(diǎn)精編17篇_第4頁(yè)
數(shù)學(xué)集合的知識(shí)點(diǎn)精編17篇_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)學(xué)集合的知識(shí)點(diǎn)(精編17篇)數(shù)學(xué)集合的學(xué)問(wèn)點(diǎn)(1)

一、平面解析幾何的基本思想和主要問(wèn)題

平面解析幾何是用代數(shù)的方法討論幾何問(wèn)題的一門(mén)數(shù)學(xué)學(xué)科,其基本思想就是用代數(shù)的方法討論幾何問(wèn)題。例如,用直線的方程可以討論直線的性質(zhì),用兩條直線的方程可以討論這兩條直線的位置關(guān)系等。

平面解析幾何討論的問(wèn)題主要有兩類:一是依據(jù)已知條件,求出表示平面曲線的方程;二是通過(guò)方程,討論平面曲線的性質(zhì)。

二、直線坐標(biāo)系和直角坐標(biāo)系

直線坐標(biāo)系,也就是數(shù)軸,它有三個(gè)要素:原點(diǎn)、度量單位和方向。假如讓一個(gè)實(shí)數(shù)與數(shù)軸上坐標(biāo)為的點(diǎn)對(duì)應(yīng),那么就可以在實(shí)數(shù)集與數(shù)軸上的點(diǎn)集之間建立一一對(duì)應(yīng)關(guān)系。

點(diǎn)與實(shí)數(shù)對(duì)應(yīng),則稱點(diǎn)的坐標(biāo)為,記作,如點(diǎn)坐標(biāo)為,則記作;點(diǎn)坐標(biāo)為,則記為。

直角坐標(biāo)系是由兩條相互垂直且有公共原點(diǎn)的數(shù)軸組成,兩條數(shù)軸的度量單位一般相同,但有時(shí)也可以不同,兩個(gè)數(shù)軸的交點(diǎn)是直角坐標(biāo)系的原點(diǎn)。在平面直角坐標(biāo)系中,有序?qū)崝?shù)對(duì)構(gòu)成的集合與坐標(biāo)平面內(nèi)的點(diǎn)集具有一一對(duì)應(yīng)關(guān)系。

一個(gè)點(diǎn)的坐標(biāo)是這樣求得的,由點(diǎn)向軸及軸作垂線,在兩坐標(biāo)軸上形成正投影,在軸上的正投影所對(duì)應(yīng)的值為點(diǎn)的橫坐標(biāo),在軸上的正投影所對(duì)應(yīng)的值為點(diǎn)的縱坐標(biāo)。

在學(xué)習(xí)這兩種坐標(biāo)系時(shí),要留意用類比的方法。例如,平面直角坐標(biāo)系是二維坐標(biāo)系,它有兩個(gè)坐標(biāo)軸,每個(gè)點(diǎn)的坐標(biāo)需用兩個(gè)實(shí)數(shù)(即一對(duì)有序?qū)崝?shù))來(lái)表示,而直線坐標(biāo)系是一維坐標(biāo)系,它只有一個(gè)坐標(biāo)軸,每個(gè)點(diǎn)的坐標(biāo)只需用一個(gè)實(shí)數(shù)來(lái)表示。

三、向量的有關(guān)概念和公式

假如數(shù)軸上的任意一點(diǎn)沿著軸的正向或負(fù)向移動(dòng)到另一個(gè)點(diǎn),則說(shuō)點(diǎn)在軸上作了一次位移。位移是一個(gè)既有大小又有方向的量,通常叫做位移向量,簡(jiǎn)稱向量,記作。假如點(diǎn)移動(dòng)的方向與數(shù)軸的正方向相同,則向量為正,否則為負(fù)。線段的長(zhǎng)叫做向量的長(zhǎng)度,記作。向量的長(zhǎng)度連同表示其方向的正負(fù)號(hào)叫做向量的坐標(biāo)(或數(shù)量),用表示。這里同學(xué)們要分清,,三個(gè)符號(hào)的含義。

對(duì)于數(shù)軸上任意三點(diǎn),都有成立。該等式左邊表示在數(shù)軸上點(diǎn)向點(diǎn)作一次位移,等式右邊表示點(diǎn)先向點(diǎn)作一次位移,再由點(diǎn)向點(diǎn)作一次位移,它們的最終結(jié)果是相同的。

向量的坐標(biāo)公式(或數(shù)量公式),它表示向量的數(shù)量等于終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo),這個(gè)公式特別重要。

有相等坐標(biāo)的兩個(gè)向量相等,看做同一個(gè)向量;反之,兩個(gè)相等向量坐標(biāo)必相等。

留意:①相等的全部向量看做一個(gè)整體,作為同一向量,都等于以原點(diǎn)為起點(diǎn),坐標(biāo)與這全部向量相等的那個(gè)向量。②向量與數(shù)軸上的實(shí)數(shù)(或點(diǎn))是一一對(duì)應(yīng)的,零向量即原點(diǎn)。

四、兩點(diǎn)的距離公式和中點(diǎn)公式

1。對(duì)于數(shù)軸上的兩點(diǎn),設(shè)它們的坐標(biāo)分別為,,則的距離為,的中點(diǎn)的坐標(biāo)為。

由于表示數(shù)軸上兩點(diǎn)與的距離,所以在解一些簡(jiǎn)潔的含肯定值的方程或不等式時(shí),常借助于數(shù)形結(jié)合思想,將問(wèn)題轉(zhuǎn)化為數(shù)軸上的距離問(wèn)題加以解決。例如,解方程時(shí),可以將問(wèn)題看作在數(shù)軸上求一點(diǎn),使它到,的距離之和等于。

2。對(duì)于直角坐標(biāo)系中的兩點(diǎn),設(shè)它們的坐標(biāo)分別為,,則兩點(diǎn)的距離為,的中點(diǎn)的坐標(biāo)滿意。

兩點(diǎn)的距離公式和中點(diǎn)公式是解析幾何中最基本、最常用的公式之一,要求同學(xué)們能嫻熟把握并能敏捷運(yùn)用。

五、坐標(biāo)法

坐標(biāo)法是數(shù)學(xué)中一種重要的數(shù)學(xué)思想方法,它是借助于坐標(biāo)系來(lái)討論幾何圖形的一種方法,是數(shù)形結(jié)合的典范。這種方法是在平面上建立直角坐標(biāo)系,用坐標(biāo)表示點(diǎn),把曲線看成滿意某種條件的點(diǎn)的集合或軌跡,用曲線上點(diǎn)的坐標(biāo)所滿意的方程表示曲線,通過(guò)討論方程,間接地來(lái)討論曲線的性質(zhì)。

數(shù)學(xué)集合的學(xué)問(wèn)點(diǎn)(2)

本節(jié)內(nèi)容主要是空間點(diǎn)、直線、平面之間的位置關(guān)系,在熟悉過(guò)程中,可以進(jìn)一步提高同學(xué)們的空間想象力量,進(jìn)展推理力量.通過(guò)對(duì)實(shí)際模型的熟悉,學(xué)會(huì)將文字語(yǔ)言轉(zhuǎn)化為圖形語(yǔ)言和符號(hào)語(yǔ)言,以詳細(xì)的長(zhǎng)方體中的點(diǎn)、線、面之間的關(guān)系作為載體,使同學(xué)們?cè)谥庇^感知的基礎(chǔ)上,熟悉空間中點(diǎn)、線、面之間的位置關(guān)系,點(diǎn)、線、面的位置關(guān)系是立體幾何的主要討論對(duì)象,同時(shí)也是空間圖形最基本的幾何元素.

重難點(diǎn)學(xué)問(wèn)歸納

1、平面

(1)平面概念的理解

直觀的理解:桌面、黑板面、安靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分.

抽象的理解:平面是平的,平面是無(wú)限延展的,平面沒(méi)有厚?。?/p>

(2)平面的表示法

①圖形表示法:通常用平行四邊形來(lái)表示平面,有時(shí)依據(jù)實(shí)際需要,也用其他的平面圖形來(lái)表示平面.

②字母表示:常用等希臘字母表示平面.

(3)涉及本部分內(nèi)容的符號(hào)表示有:

①點(diǎn)A在直線l內(nèi),記作;

②點(diǎn)A不在直線l內(nèi),記作;

③點(diǎn)A在平面內(nèi),記作;

④點(diǎn)A不在平面內(nèi),記作;

⑤直線l在平面內(nèi),記作;

⑥直線l不在平面內(nèi),記作;

留意:符號(hào)的使用與集合中這四個(gè)符號(hào)的使用的區(qū)分與聯(lián)系.

(4)平面的基本性質(zhì)

公理1:假如一條直線的兩個(gè)點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的全部點(diǎn)都在這個(gè)平面內(nèi).

符號(hào)表示為:.

留意:假如直線上全部的點(diǎn)都在一個(gè)平面內(nèi),我們也說(shuō)這條直線在這個(gè)平面內(nèi),或者稱平面經(jīng)過(guò)這條直線.

公理2:過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面.

符號(hào)表示為:直線AB存在唯一的平面,使得.

留意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來(lái)代替.此公理又可表示為:不共線的三點(diǎn)確定一個(gè)平面.

公理3:假如兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線.

符號(hào)表示為:.

留意:兩個(gè)平面有一條公共直線,我們說(shuō)這兩個(gè)平面相交,這條公共直線就叫作兩個(gè)平面的交線.若平面、平面相交于直線l,記作.

公理的推論:

推論1:經(jīng)過(guò)一條直線和直線外的一點(diǎn)有且只有一個(gè)平面.

推論2:經(jīng)過(guò)兩條相交直線有且只有一個(gè)平面.

推論3:經(jīng)過(guò)兩條平行直線有且只有一個(gè)平面.

2.空間直線

(1)空間兩條直線的位置關(guān)系

①相交直線:有且僅有一個(gè)公共點(diǎn),可表示為;

②平行直線:在同一個(gè)平面內(nèi),沒(méi)有公共點(diǎn),可表示為a//b;

③異面直線:不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn).

(2)平行直線

公理4:平行于同一條直線的兩條直線相互平行.

符號(hào)表示為:設(shè)a、b、c是三條直線,.

定理:假如一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等.

(3)兩條異面直線所成的角

留意:

①兩條異面直線a,b所成的角的范圍是(0°,90°].

②兩條異面直線所成的角與點(diǎn)O的選擇位置無(wú)關(guān),這可由前面所講過(guò)的“等角定理”直接得出.

③由兩條異面直線所成的角的定義可得出異面直線所成角的一般方法:

(i)在空間任取一點(diǎn),這個(gè)點(diǎn)通常是線段的中點(diǎn)或端點(diǎn).

(ii)分別作兩條異面直線的平行線,這個(gè)過(guò)程通常采納平移的方法來(lái)實(shí)現(xiàn).

(iii)指出哪一個(gè)角為兩條異面直線所成的角,這時(shí)我們要留意兩條異面直線所成的角的范圍.

3.空間直線與平面

直線與平面位置關(guān)系有且只有三種:

(1)直線在平面內(nèi):有很多個(gè)公共點(diǎn);

(2)直線與平面相交:有且只有一個(gè)公共點(diǎn);

(3)直線與平面平行:沒(méi)有公共點(diǎn).

4.平面與平面

兩個(gè)平面之間的位置關(guān)系有且只有以下兩種:

(1)兩個(gè)平面平行:沒(méi)有公共點(diǎn);

(2)兩個(gè)平面相交:有一條公共直線。

數(shù)學(xué)集合的學(xué)問(wèn)點(diǎn)(3)

1、高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié):集合一、集合有關(guān)概念

1.集合的含義

2.集合的中元素的三個(gè)特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

留意:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大

括號(hào)內(nèi)表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

3)語(yǔ)言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個(gè)元素的集合

(2)無(wú)限集含有無(wú)限個(gè)元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

2、高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié):集合間的基本關(guān)系

1.“包含”關(guān)系—子集

留意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作A?/B或B?/A

2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)A={x|x2

-1=0}B={-1,1}“元素相同則兩集合相等”即:

①任何一個(gè)集合是它本身的子集。A?A

②真子集:假如A?B,且A≠B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

③假如A?B,B?C,那么A?C

④假如A?B同時(shí)B?A那么A=B

3.不含任何元素的集合叫做空集,記為Φ

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論