直線與圓圓與圓的位置關(guān)系“百校聯(lián)賽”一等獎(jiǎng)_第1頁(yè)
直線與圓圓與圓的位置關(guān)系“百校聯(lián)賽”一等獎(jiǎng)_第2頁(yè)
直線與圓圓與圓的位置關(guān)系“百校聯(lián)賽”一等獎(jiǎng)_第3頁(yè)
直線與圓圓與圓的位置關(guān)系“百校聯(lián)賽”一等獎(jiǎng)_第4頁(yè)
直線與圓圓與圓的位置關(guān)系“百校聯(lián)賽”一等獎(jiǎng)_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

《直線與圓》學(xué)案一、學(xué)法導(dǎo)航解析幾何是高中數(shù)學(xué)的重要內(nèi)容之一,各地區(qū)在這一部分的出題情況較為相似,一般兩道小題一道大題,分值約占15%,即22分左右。具體分配為:直線和圓以及圓錐曲線的基礎(chǔ)知識(shí)兩個(gè)容易或中檔小題,機(jī)動(dòng)靈活,考查雙基;解答題難度設(shè)置在中等或以上,一般都有較高的區(qū)分度,主要考查解析幾何的本質(zhì)——“幾何圖形代數(shù)化與代數(shù)結(jié)果幾何化”以及分析問題解決問題的能力。解析幾何的主要內(nèi)容是高二中的直線與方程,圓與方程,圓錐曲線與方程考查的重點(diǎn):直線的傾斜角與斜率、點(diǎn)到直線的距離、兩條直線平行與垂直關(guān)系的判定、直線和圓的方程、直線與圓、圓與圓的位置關(guān)系;圓錐曲線的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單的幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系、曲線與方程、圓錐曲線的簡(jiǎn)單應(yīng)用等,其中以直線與圓錐曲線的位置關(guān)系最為重要。二、典例精析1.直線的基本問題:直線的方程幾種形式、直線的斜率、兩條直線平行與垂直的條件、兩直線交點(diǎn)、點(diǎn)到直線的距離。例1已知與,若兩直線平行,則的值為。解析:。點(diǎn)評(píng):解決兩直線平行問題時(shí)要記住看看是不是重合。易錯(cuò)指導(dǎo):不知道兩直線平行的條件、不注意檢驗(yàn)兩直線是否重合是本題容易出錯(cuò)的地方。例2經(jīng)過(guò)圓的圓心,且與直線垂直的直線方程是___________________。解析:圓心坐標(biāo)是,所求直線的斜率是,故所求的直線方程是,即點(diǎn)評(píng):本題考查解析幾何初步的基本知識(shí),涉及到求一般方程下的圓心坐標(biāo),兩直線垂直的條件,直線的點(diǎn)斜式方程,題目簡(jiǎn)單,但交匯性很強(qiáng),非常符合在知識(shí)網(wǎng)絡(luò)的交匯處設(shè)計(jì)試題的命題原則,一個(gè)小題就把解析幾何初步中直線和圓的基本知識(shí)考查的淋漓盡致。易錯(cuò)指導(dǎo):基礎(chǔ)知識(shí)不牢固,如把圓心坐標(biāo)求錯(cuò),不知道兩直線垂直的條件,或是運(yùn)算變形不細(xì)心,都可能導(dǎo)致得出錯(cuò)誤的結(jié)果。2.圓的基本問題:圓的標(biāo)準(zhǔn)方程和一般方程、兩圓位置關(guān)系例3已知圓的方程為.設(shè)該圓過(guò)點(diǎn)的最長(zhǎng)弦和最短弦分別為和,則四邊形的面積為()A.B.C.D.解析:圓心坐標(biāo)是,半徑是,圓心到點(diǎn)的距離為,根據(jù)題意最短弦和最長(zhǎng)弦(即圓的直徑)垂直,故最短弦的長(zhǎng)為,所以四邊形的面積為點(diǎn)評(píng):本題考查圓、平面圖形的面積等基礎(chǔ)知識(shí),考查邏輯推理、運(yùn)算求解等能力。解題的關(guān)鍵有二,一是通過(guò)推理知道兩條弦互相垂直并且有一條為圓的直徑,二是能根據(jù)根據(jù)面積分割的道理,推出這個(gè)四邊形的面積就是兩條對(duì)角線之積的一半。本題是一道以分析問題解決問題的能力立意設(shè)計(jì)的試題。易錯(cuò)指導(dǎo):邏輯思維能力欠缺,不能找到解題的關(guān)鍵點(diǎn),或是運(yùn)算能力欠缺,運(yùn)算失誤,是本題不能解答或解答錯(cuò)誤的主要原因。3.圓錐曲線的基本問題:橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及其性質(zhì),求簡(jiǎn)單的曲線方程例4已知點(diǎn)P在拋物線y2=4x上,那么點(diǎn)P到點(diǎn)Q(2,-1)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)P的坐標(biāo)為()A.(,-1)B.(,1)C.(1,2)D.(1,-2)解析:定點(diǎn)在拋物線內(nèi)部,由拋物線的定義,動(dòng)點(diǎn)到拋物線焦點(diǎn)的距離等于它到準(zhǔn)線的距離,問題轉(zhuǎn)化為當(dāng)點(diǎn)到點(diǎn)和拋物線的準(zhǔn)線距離之和最小時(shí),求點(diǎn)的坐標(biāo),顯然點(diǎn)是直線和拋物線的交點(diǎn),解得這個(gè)點(diǎn)的坐標(biāo)是。點(diǎn)評(píng):本題考查拋物線的定義和數(shù)形結(jié)合解決問題的思想方法類似的題目在過(guò)去的高考中比較常見。易錯(cuò)指導(dǎo):不能通過(guò)草圖和簡(jiǎn)單的計(jì)算確定點(diǎn)和拋物線的位置關(guān)系,不能將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為其到準(zhǔn)線的距離,是解錯(cuò)本題或不能解答本題的原因。例5已知圓.以圓與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件的雙曲線的標(biāo)準(zhǔn)方程為__________。解析:圓和軸的交點(diǎn)是,和軸沒有交點(diǎn)。故只能是點(diǎn)為雙曲線的一個(gè)頂點(diǎn),即;點(diǎn)為雙曲線的一個(gè)焦點(diǎn),即。,所以所求雙曲線的標(biāo)準(zhǔn)方程為。點(diǎn)評(píng):本題考查圓和雙曲線的基礎(chǔ)知識(shí),考查數(shù)形結(jié)合的數(shù)學(xué)思想。解題的關(guān)鍵是確定所求雙曲線的焦點(diǎn)和頂點(diǎn)坐標(biāo)。易錯(cuò)指導(dǎo):數(shù)形結(jié)合的思想意識(shí)薄弱,求錯(cuò)圓與坐標(biāo)軸的交點(diǎn)坐標(biāo),用錯(cuò)雙曲線中的關(guān)系等,是不同出錯(cuò)的主要問題。4.直線與圓錐曲線的位置關(guān)系例6若圓的半徑為1,圓心在第一象限,且與直線和軸相切,則該圓的標(biāo)準(zhǔn)方程是()A.B.C.D.解析:設(shè)圓心坐標(biāo)為,則且.又,故,由得(圓心在第一象限、舍去)或,故所求圓的標(biāo)準(zhǔn)方程是。點(diǎn)評(píng):本題考查直線和圓的有關(guān)基礎(chǔ)知識(shí),考查坐標(biāo)法的思想,考查運(yùn)算能力。解題的關(guān)鍵是圓心坐標(biāo)。易錯(cuò)指導(dǎo):不能把直線與圓相切的幾何條件通過(guò)坐標(biāo)的思想轉(zhuǎn)化為代數(shù)條件,或是運(yùn)算求解失誤等。例7(過(guò)雙曲線的右頂點(diǎn)為A,右焦點(diǎn)為F。過(guò)點(diǎn)F平行雙曲線的一條漸近線的直線與雙曲線交于點(diǎn)B,則△AFB的面積為______________。解析:雙曲線右頂點(diǎn),右焦點(diǎn),雙曲線一條漸近線的斜率是,直線的方程是,與雙曲線方程聯(lián)立解得點(diǎn)的縱坐標(biāo)為,故△AFB的面積為點(diǎn)評(píng):本題考查雙曲線的基礎(chǔ)知識(shí)和運(yùn)算能力。易錯(cuò)指導(dǎo):過(guò)右焦點(diǎn)和漸近線平行的直線和雙曲線只有一個(gè)交點(diǎn),如果寫錯(cuò)漸近線的方程,就會(huì)解出兩個(gè)交點(diǎn),不但增加了運(yùn)算量,還使結(jié)果錯(cuò)誤。例8在平面直角坐標(biāo)系中,橢圓的焦距為,以為圓心,為半徑的圓做圓,若過(guò)點(diǎn),所作圓的兩切線互相垂直,則該橢圓的離心率為____________。解析:過(guò)點(diǎn)作圓的兩切線互相垂直,如圖,這說(shuō)明四邊形是一個(gè)正方形,即圓心到點(diǎn)的距離等于圓的半徑的倍,即,故。點(diǎn)評(píng):本題把橢圓方程、圓和圓的切線結(jié)合起來(lái),考查橢圓的簡(jiǎn)單幾何性質(zhì),體現(xiàn)了“在知識(shí)的網(wǎng)絡(luò)交匯處設(shè)計(jì)試題”的原則,較全面地考查了解析幾何的基本知識(shí)。解題的突破口是將圓的兩條切線互相垂直轉(zhuǎn)化為一個(gè)數(shù)量上的關(guān)系。易錯(cuò)指導(dǎo):陷入圓的兩條切線互相垂直,不能通過(guò)數(shù)形結(jié)合的方法找到解題途徑等,是考生解錯(cuò)本題的主要原因。例9設(shè),橢圓方程為,拋物線方程為.如圖4所示,過(guò)點(diǎn)作軸的平行線,AyxOBAyxOBGFF1(1)求滿足條件的橢圓方程和拋物線方程;(2)設(shè)分別是橢圓長(zhǎng)軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn),使得為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說(shuō)明理由(不必具體求出這些點(diǎn)的坐標(biāo))。解析:(1)由得,當(dāng)?shù)?,G點(diǎn)的坐標(biāo)為,,,過(guò)點(diǎn)G的切線方程為即,令得,點(diǎn)的坐標(biāo)為,由橢圓方程得點(diǎn)的坐標(biāo)為,即,即橢圓和拋物線的方程分別為和;(2)過(guò)作軸的垂線與拋物線只有一個(gè)交點(diǎn),以為直角的只有一個(gè),同理以為直角的只有一個(gè)若以為直角,設(shè)點(diǎn)坐標(biāo)為,、兩點(diǎn)的坐標(biāo)分別為和,。關(guān)于的二次方程有一大于零的解,有兩解,即以為直角的有兩個(gè),因此拋物線上存在四個(gè)點(diǎn)使得為直角三角形。點(diǎn)評(píng):本題考查橢圓和拋物線方程的求法、拋物線的切線方程的求法、存在性問題的解決方法、分析問題解決問題的能力,是一道幾乎網(wǎng)羅了平面解析幾何的所有知識(shí)點(diǎn)并且和導(dǎo)數(shù)的應(yīng)用交匯在一起的綜合性試題,是一道“在知識(shí)網(wǎng)絡(luò)的交匯處”設(shè)計(jì)的典型試題。易錯(cuò)指導(dǎo):本題把拋物線和橢圓結(jié)合在一起,題目的條件里還有兩條直線,考生在心理上畏懼,可能出現(xiàn)的問題是思維混亂,理不清題目中錯(cuò)綜復(fù)雜的關(guān)系,找不到正確的解題思路;在解決第二問時(shí)缺乏分類討論的思想意識(shí)產(chǎn)生漏解等。三、專題綜合易錯(cuò)點(diǎn)一:考慮不全面例1過(guò)(0,2)作直線,使與拋物線僅有一個(gè)公共點(diǎn),這樣的直線有幾條?錯(cuò)解:設(shè)直線的方程為y=kx+2,與聯(lián)立,整理得。因?yàn)榕c拋物線僅有一個(gè)公共點(diǎn),所以,解得。此時(shí)的方程為所以這樣的直線有一條。剖析:(1)問題之一,錯(cuò)解忽視了對(duì)斜率不存在這一情況的考慮,事實(shí)上,直線方程為x=0時(shí),是符合條件的。(2)問題之二,得到方程后,方程不一定是一元二次方程。如果不是一元二次方程,當(dāng)然就沒有什么判別式了,故需按k=0及兩種情況考慮。正解:當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為y=kx+2,與聯(lián)立,整理得。(1)k=0時(shí),方程只有一個(gè)解y=2,故為直線y=2時(shí)與拋物線只有一個(gè)公共點(diǎn),滿足條件;(2)時(shí),因?yàn)榕c拋物線僅有一個(gè)公共點(diǎn),所以,解得解得。此時(shí)的方程為。當(dāng)直線的斜率不存在時(shí),直線x=0與拋物線只有一個(gè)公共點(diǎn),滿足條件綜上,符合條件的直線有三條:x=0,y=2,。點(diǎn)評(píng):忽視含參數(shù)系數(shù)的討論,以及設(shè)直線方程(為點(diǎn)斜式、斜截式、截距式等時(shí),忽視對(duì)引入的參數(shù)(如斜率、截距等)的特殊情況的考慮是同學(xué)們?cè)谧鲱}中的常見錯(cuò)誤,一定要注意。易錯(cuò)點(diǎn)二:變形不等價(jià)例2直線與曲線有且僅有一個(gè)公共點(diǎn),則的取值范圍是()A.B.或C.D.錯(cuò)解:聯(lián)立方程組,消去得,因?yàn)橹本€與曲線有且僅有一個(gè)公共點(diǎn),所以方程只有一解,所以,解得,所以選A。剖析:本題中曲線并不是一個(gè)完整的圓而是半個(gè)圓(右半圓),而時(shí),直線與曲線有且僅有一個(gè)公共點(diǎn),并不能保證直線與右半圓也只有一個(gè)公共點(diǎn)。正解:作出曲線的圖形,如圖所示:由圖形可得,當(dāng)直線在和之間變化時(shí),滿足題意,同時(shí),當(dāng)直線在的位置時(shí)也同時(shí)滿足題意,所以應(yīng)選(B)點(diǎn)評(píng):曲線的表達(dá)式本身限制了的取值只是非負(fù)值,所以曲線只是圓的右半部分。若用代數(shù)方法處理,應(yīng)是方程組化為關(guān)于的方程后只有一個(gè)非負(fù)解,相比之下數(shù)形結(jié)合更簡(jiǎn)捷明快四、專題突破1.過(guò)點(diǎn)的直線l經(jīng)過(guò)圓的圓心,則直線l的傾斜角大小為()A.150°B.120°C.30°D.60°2.(08重慶卷3)圓O1:和圓O2:的位置關(guān)系是()A.相離B.相交C.外切D.內(nèi)切3.方程對(duì)應(yīng)的曲線是()4.設(shè)直線與拋物線交于A、B兩點(diǎn),則AB的中點(diǎn)到軸的距離為()。A.4B.3C.2D.15.若直線mx+ny=4和⊙O∶沒有交點(diǎn),則過(guò)(m,n)的直線與橢圓的交點(diǎn)個(gè)數(shù)()A.至多一個(gè)B.2個(gè)C.1個(gè)D.0個(gè)6.在橢圓上有一點(diǎn)P,F(xiàn)1、F2是橢圓的左右焦點(diǎn),△F1PF2為直角三角形,則這樣的點(diǎn)P有()A.4個(gè)或6個(gè)或8個(gè)B.4個(gè)C.6個(gè)D.8個(gè)7.已知點(diǎn)在圓上運(yùn)動(dòng),則代數(shù)式的最大值是()A.B.-C.D.-8.橢圓的離心率的取值范圍是()A.()B.()C.()D.()9.對(duì)于拋物線上任意一點(diǎn),點(diǎn)都滿足,則實(shí)數(shù)的最大值是()A.0B.1C.2D.410.已知橢圓,過(guò)右焦點(diǎn)F做不垂直于軸的弦交橢圓于A、B兩點(diǎn),AB的垂直平分線交軸于N,則()A.B.C.D.11.已知曲線和直線(a、b為非零實(shí)數(shù)),在同一坐標(biāo)系中,它們的圖形可能是()yOxyyOxyOxyOxyOxABCD12.已知點(diǎn)P在拋物線上,那么點(diǎn)P到點(diǎn)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)P的坐標(biāo)為()A.B.C.D.13.在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),已知兩點(diǎn),。若點(diǎn)滿足,其中且,則點(diǎn)的軌跡方程為()A.B.C.D.x+2y-5=014.已知雙曲線E的離心率為e,左、右兩焦點(diǎn)分別為F1、F2,拋物線C以F2為頂點(diǎn),F(xiàn)1為焦點(diǎn),點(diǎn)P為拋物線與雙曲線右支上的一個(gè)交點(diǎn),若a|PF2|+c|PF1|=8a2,則e的值為()A.EQ\r(3)B.3C.EQ\r(2)D.EQ\r(6)二、填空題(本大題共4小題,每小題4分,共16分,請(qǐng)把答案直接填在題中橫線上)15.(文科)已知拋物線的直線與拋物線相交于兩點(diǎn),,則最小值為_________________。16.(理科)已知拋物線到拋物線的準(zhǔn)線距離為d1,到直線的距離為d2,則d1+d2的最小值是__

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論