版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
arXiv:2304.06488v1[cs.CY]4Apr2023
OneSmallStepforGenerativeAI,OneGiantLeapforAGI:ACompleteSurveyonChatGPTinAIGCEra
CHAONINGZHANG,KyungHeeUniversity,SouthKorea
CHENSHUANGZHANG,KAIST,SouthKorea
CHENGHAOLI,KAIST,SouthKorea
YUQIAO,KyungHeeUniversity,SouthKorea
SHENGZHENG,BeijingInstituteofTechnology,China
SUMITKUMARDAM,KyungHeeUniversity,SouthKorea
MENGCHUNZHANG,KAIST,SouthKorea
JUNGUKKIM,KyungHeeUniversity,SouthKorea
SEONGTAEKIM,KyungHeeUniversity,SouthKorea
JINWOOCHOI,KyungHeeUniversity,SouthKorea
GYEONG-MOONPARK,KyungHeeUniversity,SouthKorea
SUNG-HOBAE,KyungHeeUniversity,SouthKorea
LIK-HANGLEE,HongKongPolytechnicUniversity,HongKongSAR(China)
PANHUI,HongKongUniversityofScienceandTechnology(Guangzhou),China
INSOKWEON,KAIST,SouthKorea
CHOONGSEONHONG,KyungHeeUniversity,SouthKorea
OpenAIhasrecentlyreleasedGPT-4(a.k.a.ChatGPTplus),whichisdemonstratedtobeonesmallstepforgenerativeAI(GAI),butonegiantleapforartificialgeneralintelligence(AGI).SinceitsofficialreleaseinNovember2022,ChatGPThasquicklyattractednumeroususerswithextensivemediacoverage.SuchunprecedentedattentionhasalsomotivatednumerousresearcherstoinvestigateChatGPT
fromvariousaspects.AccordingtoGooglescholar,therearemorethan500articleswithChatGPTintheirtitlesormentioningitintheirabstracts.Consideringthis,areviewisurgentlyneeded,andourworkfillsthisgap.Overall,thisworkisthefirsttosurveyChatGPTwithacomprehensivereviewofitsunderlyingtechnology,applications,andchallenges.Moreover,wepresentanoutlookon
Authors’addresses:ChaoningZhang,KyungHeeUniversity,SouthKorea,chaoningzhang1990@;ChenshuangZhang,KAIST,SouthKorea,zcs15@kaist.ac.kr;ChenghaoLi,KAIST,SouthKorea,lc;YuQiao,KyungHeeUniversity,SouthKorea,qiaoyu@khu.ac.kr;ShengZheng,BeijingInstituteofTechnology,China,zszhx2021@;SumitKumarDam,KyungHeeUniversity,SouthKorea,skd160205@khu.ac.kr;MengchunZhang,KAIST,SouthKorea,zhangmengchun527@;JungUkKim,KyungHeeUniversity,SouthKorea,ju.kim@khu.ac.kr;SeongTaeKim,KyungHeeUniversity,SouthKorea,st.kim@khu.ac.kr;JinwooChoi,KyungHeeUniversity,SouthKorea,jinwoochoi@khu.ac.kr;Gyeong-MoonPark,KyungHeeUniversity,SouthKorea,gmpark@khu.ac.kr;Sung-HoBae,KyungHeeUniversity,SouthKorea,shbae@khu.ac.kr;Lik-HangLee,HongKongPolytechnicUniversity,HongKongSAR(China),lik-hang.lee@.hk;PanHui,HongKongUniversityofScienceandTechnology(Guangzhou),China,panhui@ust.hk;InSoKweon,KAIST,SouthKorea,iskweon77@kaist.ac.kr;ChoongSeonHong,KyungHeeUniversity,SouthKorea,cshong@khu.ac.kr.
Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Copyrightsforcomponents
ofthisworkownedbyothersthanACMmustbehonored.Abstractingwithcreditispermitted.Tocopyotherwise,orrepublish,topostonserversortoredistributetolists,requirespriorspecificpermissionand/orafee.Requestpermissionsfrompermissions@.
?2022AssociationforComputingMachinery.
ManuscriptsubmittedtoACM
ManuscriptsubmittedtoACM1
2Zhangetal.
howChatGPTmightevolvetorealizegeneral-purposeAIGC(a.k.a.AI-generatedcontent),whichwillbeasignificantmilestoneforthedevelopmentofAGI.
CCSConcepts:?Computingmethodologies→Computervisiontasks;Naturallanguagegeneration;Machinelearningapproaches.AdditionalKeyWordsandPhrases:Survey,ChatGPT,GPT-4,GenerativeAI,AGI,ArtificialGeneralIntelligence,AIGC
ACMReferenceFormat:
ChaoningZhang,ChenshuangZhang,ChenghaoLi,YuQiao,ShengZheng,SumitKumarDam,MengchunZhang,JungUkKim,SeongTaeKim,JinwooChoi,Gyeong-MoonPark,Sung-HoBae,Lik-HangLee,PanHui,InSoKweon,andChoongSeonHong.2022.
OneSmallStepforGenerativeAI,OneGiantLeapforAGI:ACompleteSurveyonChatGPTinAIGCEra.1,1(April2022),
29
pages.
.org/XXXXXXX.XXXXXXX
https://doi
Contents
Abstract
1
Contents
2
1Introduction
2
2OverviewofChatGPT
4
2.1OpenAI
4
2.2Capabilities
5
3TechnologybehindChatGPT
6
3.1Twocoretechniques
6
3.2Technologypath
7
4ApplicationsofChatGPT
10
4.1Scientificwriting
10
4.2Educationfield
13
4.3Medicalfield
14
4.4Otherfields
15
5Challenges
16
5.1Technicallimitations
16
5.2Misusecases
17
5.3Ethicalconcerns
18
5.4Regulationpolicy
19
6Outlook:TowardsAGI
20
6.1Technologyaspect
20
6.2Beyondtechnology
21
7Conclusion
22
References
22
1INTRODUCTION
ThepastfewyearshavewitnessedtheadventofnumerousgenerativeAI(AIGC,a.k.a.AI-generatedcontent)tools[
73
,
135
,
141
],suggestingAIhasenteredaneweraofcreatinginsteadofpurelyunderstandingcontent.Foracomplete
ManuscriptsubmittedtoACM
Fig.1.Structureoverviewofthissurvey.
OneSmallStepforGenerativeAI,OneGiantLeapforAGI:ACompleteSurveyonChatGPTinAIGCEra3
ManuscriptsubmittedtoACM
4Zhangetal.
surveyongenerativeAI(AIGC),thereaderscanreferto[
214
].AmongthoseAIGCtools,ChatGPT,whichwasreleasedinNovember2022,hascaughtunprecedentedattention.Itattractednumeroususers,andthenumberofactivemonthlyuserssurpassed100millionwithinonlytwomonths,breakingtheusergrowthrecordofothersocialproducts[
118
].ChatGPTwasdevelopedbyOpenAI,whichstartedasanon-profitresearchlaboratory,withamissionofbuildingsafeandbeneficialartificialgeneralintelligence(AGI).AfterannouncingGPT-3in2020,OpenAIhasgraduallybeenrecognizedasaworld-leadingAIlab.Veryrecently,IthasreleasedGPT-4,whichcanbeseenasonesmallstepforgenerativeAI,butonegiantstepforAGI.
Duetoitsimpressivecapabilitiesonlanguageunderstanding,numerousnewsarticlesprovideextensivecoverageandintroduction,tonameafew,BBCScienceFocus[
69
],BBCNews[
39
],CNNBusiness[
79
],BloombergNews[
157
].
Google’smanagementhasissueda“codered"overthethreatofChatGPT,suggestingthatChatGPTposedasignificantdangertothecompany,especiallytoitssearchservice.ThisdangerseemsmoredifficulttoignoreafterMicrosoftadoptedChatGPTintheirBingsearchservice.ThestockpricechangealsoreflectsthebeliefthatChatGPTmighthelpBingcompetewithGooglesearch.SuchunprecedentedattentiononChatGPThasalsomotivatednumerousresearcherstoinvestigatethisintriguingAIGCtoolfromvariousaspects[
149
,
163
].Accordingtoourliteraturereview
ongooglescholar,nofewerthan500articlesincludeChatGPTintheirtitlesormentionthisviraltermintheirabstract.ItischallengingforreaderstograsptheprogressofChatGPTwithoutacompletesurvey.OurcomprehensivereviewprovidesafirstlookintoChatGPTinatimelymanner.
Sincethetopicofthissurveycanberegardedasacommercialtool,wefirstpresentabackgroundonthecompany,i.e.OpenAI,whichdevelopedChatGPT.Moreover,thissurveyalsopresentsadetaileddiscussionofthecapabilitiesofChatGPT.Followingthebackgroundintroduction,thisworksummarizesthetechnologybehindChatGPT.Specifically,
weintroduceitstwocoretechniques:Transformerarchitectureandautoregressivepertaining,basedonwhichwepresentthetechnologypathofthelargelanguagemodelGPTfromv1tov4[
18
,
122
,
136
,
137
].Accordingly,wehighlighttheprominentapplicationsandtherelatedchallenges,suchastechnicallimitations,misuse,ethicsandregulation.Finally,weconcludethissurveybyprovidinganoutlookonhowChatGPTmightevolveinthefuture
towardsgeneral-purposeAIGCforrealizingtheultimategoalofAGI.AstructuredoverviewofourworkisshowninFigure
1
.
2OVERVIEWOFCHATGPT
First,weprovideabackgroundofChatGPTandthecorrespondingorganization,i.e.,OpenAI,whichaimstobuildartificialgeneralintelligence(AGI).ItisexpectedthatAGIcansolvehuman-levelproblemsandbeyond,onthepremiseofbuildingsafe,trustworthysystemsthatarebeneficialtooursociety.
2.1OpenAI
OpenAIisaresearchlaboratorymadeupofagroupofresearchersandengineerscommittedtothecommissionofbuildingsafeandbeneficialAGI[
50
].ItwasfoundedonDecember11,2015,byagroupofhigh-profiletechexecutives,
includingTeslaCEOElonMusk,SpaceXPresidentGwynneShotwell,LinkedInco-founderReidHoffman,andventurecapitalistsPeterThielandSamAltman[
78
].Inthissubsection,wewilltalkabouttheearlydaysofOpenAI,howitbecameafor-profitorganization,anditscontributionstothefieldofAI.
Inthebeginning,OpenAIisanon-profitorganization[
24
],anditsresearchiscenteredondeeplearningandrein-forcementlearning,naturallanguageprocessing,robotics,andmore.Thecompanyquicklyestablishedareputationforitscutting-edgeresearchafterpublishingseveralinfluentialpapers[
123
]anddevelopingsomeofthemostsophisticated
ManuscriptsubmittedtoACM
OneSmallStepforGenerativeAI,OneGiantLeapforAGI:ACompleteSurveyonChatGPTinAIGCEra5
AImodels.However,tocreateAItechnologiesthatcouldbringinmoney,OpenAIwasreorganizedasafor-profitcompanyin2019[
31
].Despitethis,thecompanykeepsdevelopingethicalandsecureAIalongsidecreatingcommercialapplicationsforitstechnology.Additionally,OpenAIhasworkedwithseveraltoptechfirms,includingMicrosoft,Amazon,andIBM.Microsoftrevealedanewmultiyear,multibillion-dollarventurewithOpenAIearlierthisyear[
21
].
ThoughMicrosoftdidnotgiveaprecisesumofinvestment,SemaforclaimedthatMicrosoftwasindiscussionstospendupto$10billion[
101
].AccordingtotheWallStreetJournal,OpenAIisworthroughly$29billion[
13
].
Fig.2.OpenAIproductstimeline.
Fromlargelanguagemodelstoopen-sourcesoftware,OpenAIhassignificantlyadvancedthefieldofAI.Tobeginwith,OpenAIhasdevelopedsomeofthemostpotentlanguagemodelstodate,includingGPT-3[
95
],whichhasgainedwidespreadpraiseforitsabilitytoproducecohesiveandrealistictextinnumerouscontexts.OpenAIalsocarriesoutresearchinreinforcementlearning,abranchofartificialintelligencethataimstotrainrobotstobasetheirchoicesonrewardsandpunishments.ProximalPolicyOptimization(PPO)[
71
],SoftActor-Critic(SAC)[
189
],andTrustArea
PolicyOptimization(TRPO)[
181
]arejustafewofthereinforcementlearningalgorithmsthatOpenAIhascreatedsofar.Thesealgorithmshavebeenemployedtotrainagentsforvarioustasks,includingplayinggamesandcontrollingrobots.OpenAIhascreatedmanysoftwaretoolsuptothispointtoassistwithitsresearchendeavors,includingtheOpenAIGym[
76
],atoolsetforcreatingandcontrastingreinforcementlearningalgorithms.Intermsofhardware,OpenAIhasinvestedinseveralhigh-performanceprocessingsystems,includingtheDGX-1andDGX-2systemsfromNVIDIA[
150
].ThesesystemswerecreatedwithdeeplearninginmindandarecapableofofferingtheprocessingpowerneededtobuildsophisticatedAImodels.ExceptforChatGPT,otherpopulartoolsdevelopedbyOpenAIincludeDALL-E[
141
]
andWhisper[
135
],Codex[
25
].AsummarizationoftheOpenAIproductpipelineisshowninFigure
2
.
2.2Capabilities
ChatGPTusesinteractiveformstoprovidedetailedandhuman-likeresponsestoquestionsraisedbyusers[
1
].ChatGPTiscapableofproducinghigh-qualitytextoutputsbasedonthepromptinputtext.GPT-4-basedChatGPTpluscanadditionallytakeimagesastheinput.Exceptforthebasicroleofachatbot,ChatGPTcansuccessfullyhandlevarioustext-to-texttasks,suchastextsummarization[
45
],textcompletion,textclassification[
86
],sentiment[
221
]analysis[
112
],paraphrasing[
104
],translation[
35
],etc.
ChatGPThasbecomeapowerfulcompetitorinsearchengines.Asmentionedinourintroductorysection,Google,whichsuppliesthemostexcellentsearchengineintheworld,considersChatGPTasachallengetoitsmonopoly[
188
].
ManuscriptsubmittedtoACM
6Zhangetal.
Notably,MicrosofthasintegratedChatGPTintoitsBingsearchengine,allowinguserstoreceivemorecreativereplies[
174
].WeseeanobviousdistinctionbetweensearchenginesandChatGPT.Thatis,searchenginesassistusersinfindingtheinformationtheywant,whileChatGPTdevelopsrepliesinatwo-wayconversation,providinguserswithabetterexperience.
Othercompaniesaredevelopingsimilarchatbotproducts,suchasLamMDAfromGoogleandBlenderBotfromMeta.
UnlikeChatGPT,theLaMDA,developedbyGooglein2021,activelyparticipatesinconversationswithusers,resultinginracist,sexist,andotherformsofbiasinoutputtext[
119
].BlenderBotisMeta’schatbot,andthefeedbackfromusersisrelativelydullbecausethedeveloperhassettighterconstraintsonitsoutputmaterial[
130
].ChatGPTappearsto
havebalancedthehuman-likeoutputandbiastosomelevel,allowingformoreexcitingresponses.Significantly,inadditiontobeingmoreefficientandhavingahighermaximumtokenlimitthanvanillaChatGPT,ChatGPTpoweredbyGPT-4cancreatemultipledialectlanguagesandemotionalreactions,aswellasreduceundesirableresults,therebydecreasingbias[
169
].Itisnotedin[
96
]thatthemodelingcapacityofChatGPTcanbefurtherimprovedbyusingmulti-tasklearningandenhancingthequalityoftrainingdata.
3TECHNOLOGYBEHINDCHATGPT
3.1Twocoretechniques
Backbonearchitecture:Transformer.BeforetheadventofTransformer[
182
],RNNwasadominantbackbonearchitectureforlanguageunderstanding,andattentionwasfoundtobeacriticalcomponentofthemodelperformance.
Incontrasttopriorworksthatonlyuseattentionasasupportivecomponent,theGoogleteammadeaclaimintheirworktitle:“AttentionisAllYouNeed"[
182
]claimedthatsinceGooglereleasedapaper,namely“AttentionisAllYouNeed"[
182
]in2017,researchanduseoftheTransformerbackbonestructurehasexperiencedexplosivegrowthinthedeeplearningcommunity.Therefore,wepresentasummaryofhowtheTransformerworks,withafocusonitscorecomponentcalledself-attention.
Theunderlyingprincipleofself-attentionpositsthatgivenaninputtext,themechanismiscapableofallocatingdistinctweightstoindividualwords,therebyfacilitatingthecaptureofdependenciesandcontextualrelationshipswithinthesequence.Eachelementwithinthesequencepossessesitsuniquerepresentation.Tocalculatetherelationshipofeachelementtootherswithinthesequence,onecomputestheQ(query),K(key),andV(value)matricesoftheinputsequence.Thesematricesarederivedfromthelineartransformationsoftheinputsequence.Typically,thequerymatrixcorrespondstothecurrentelement,thekeymatrixrepresentsotherelements,andthevaluematrixencapsulatesinformationtobeaggregated.Theassociationweightbetweenthecurrentelementandotherelementsisdeterminedbycalculatingthesimilaritybetweenthequeryandkeymatrices.Thisisgenerallyachievedthroughadotproductoperation.Subsequently,thesimilarityisnormalizedtoensurethatthesumofallassociationsequals1,whichiscommonlyexecutedviathesoftmaxfunction.Thenormalizedweightsarethenappliedtothecorrespondingvalues,followedbytheaggregationoftheseweightedvalues.Thisprocessresultsinanovelrepresentationthatencompassestheassociationinformationbetweenthecurrentwordandotherwordsinthetext.Theaforementionedprocesscanbeformallyexpressedasfollows:
Attention(Q,K,V)=Softmax()V.(1)
Transformertechniqueshavebecomeanessentialfoundationfortherecentdevelopmentoflargelanguagemodels,suchasBERT[
41
]andGPT[
18
,
122
,
136
,
137
]seriesarealsomodelsbasedonTransformertechniques.Thereisalsoa
ManuscriptsubmittedtoACM
OneSmallStepforGenerativeAI,OneGiantLeapforAGI:ACompleteSurveyonChatGPTinAIGCEra7
lineofworksextendingTransformerfromlanguagetovisuals,i.e.,computervision[
42
,
63
,
100
],whichsuggeststhat
TransformerhasbecomeaunifiedbackbonearchitectureforbothNLPandcomputervision.
Generativepretraining:Autoregressive.Formodelpertaining[
64
,
212
,
216
–
218
],therearemultiplepopulargenerativemodelingmethods,includingenergy-basedmodels[
56
,
159
,
160
,
186
],variationalautoencoder[
5
,
84
,
124
],GAN[
17
,
54
,
198
],diffusionmodel[
20
,
33
,
213
,
215
,
220
],etc.Here,wemainlysummarizeautoregressivemodelingmethods[
11
,
90
,
90
,
177
,
178
]astheyarethefoundationofGPTmodels[
18
,
122
,
136
,
137
].
Autoregressivemodelsconstituteaprominentapproachforhandlingtimeseriesdatainstatisticalanalysis.Thesemodelsspecifythattheoutputvariableislinearlydependentonitsprecedingvalues.Inthecontextoflanguagemodeling[
18
,
122
,
136
,
137
],autoregressivemodelspredictthesubsequentwordgiventhepreviousword,orthelastprobablewordgiventhefollowingwords.Themodelslearnajointdistributionofsequencedata,employingprevioustimestepsasinputstoforecasteachvariableinthesequence.Theautoregressivemodelpositsthatthejointdistribution
pe(x)canbefactorizedintoaproductofconditionaldistributions,asdemonstratedbelow:
pe(x)=pe(x1)pe(x2|x1) pe(xn|x1,x2,...,xn?1).(
2)
Whilebothrelyonprevioustimesteps,autoregressivemodelsdivergefromrecurrentneuralnetwork(RNN)
architecturesinthesensethattheformerutilizesprevioustimestepsasinputinsteadofthehiddenstatefoundinRNNs.Inessence,autoregressivemodelscanbeconceptualizedasafeed-forwardnetworkthatincorporatesallprecedingtime-stepvariablesasinputs.
Earlyworksmodeleddiscretedataemployingdistinctfunctionstoestimatetheconditionaldistribution,suchaslogisticregressioninFullyVisibleSigmoidBeliefNetwork(FVSBN)[
51
]andonehiddenlayerneuralnetworksinNeuralAutoregressiveDistributionEstimation(NADE)[
90
].Subsequentresearchexpandedtomodelcontinuousvariables[
177
,
178
].Autoregressivemethodshavebeenextensivelyappliedtootherfieldswithrepresentativeworks:PixelCNN[
180
]andPixelCNN++[
153
]),audiogeneration(WaveNet[
179
]).
3.2Technologypath
ThedevelopmentofChatGPTisbasedonaseriesofGPTmodels,whichconstituteasubstantialachievementforthefieldofNLP.AnoverviewofthisdevelopmentissummarizedinFigure
6
.Inthefollowing,wesummarizethekeycomponentsofGPTaswellasthemajorchangesintheupdatedGPTs.
Table1.ComparisonbetweenGPTandBERT.
Category
Description
Similarities
Backbone
BothGPTandBERTuseattention-basedTransformer.
LearningParadigm
BothG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年松原貨運從業(yè)資格證模擬考
- 2025年咸陽下載b2貨運從業(yè)資格證模擬考試考試
- 2025年寧波貨運從業(yè)資格證考試模擬
- 2025年慶陽運輸從業(yè)資格證考試技巧
- 2025年河南道路貨運輸從業(yè)資格證模擬考試題庫
- 2025年三明貨運從業(yè)資格模擬考
- 2024年度二手房交易安全保障合同樣本3篇
- 醫(yī)藥代表聘用合同樣本
- 航空公司返聘退休地勤勞務(wù)合同
- 中式餐廳吊頂施工合同
- 《計算機組成原理》全冊詳解優(yōu)秀課件
- 五官科眼耳鼻咽喉科醫(yī)療常用器械的認識
- 企業(yè)清產(chǎn)核資報表
- 2023年山東商務(wù)職業(yè)學(xué)院招考聘用36人筆試歷年高頻考點試題含答案附詳解
- 平凡之路歌詞全文
- 2024年全國碩士研究生考試《英語二》模擬試卷一
- 醫(yī)療安全不良事件
- 培訓(xùn)提問(討論)記錄表
- 材料科學(xué)基礎(chǔ)ppt上海交通大學(xué)演示文稿
- 2022年北京語言大學(xué)各單位新編長聘人員招聘需求筆試備考題庫及答案解析
- 《蛋糕裱花必修技術(shù)》PPT完整版
評論
0/150
提交評論