2023屆云南省玉溪市峨山民中高考沖刺模擬數(shù)學(xué)試題含解析_第1頁
2023屆云南省玉溪市峨山民中高考沖刺模擬數(shù)學(xué)試題含解析_第2頁
2023屆云南省玉溪市峨山民中高考沖刺模擬數(shù)學(xué)試題含解析_第3頁
2023屆云南省玉溪市峨山民中高考沖刺模擬數(shù)學(xué)試題含解析_第4頁
2023屆云南省玉溪市峨山民中高考沖刺模擬數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的圖象大致為A. B. C. D.2.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他死后的墓碑上刻著一個(gè)“圓柱容球”的立體幾何圖形,為紀(jì)念他發(fā)現(xiàn)“圓柱內(nèi)切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結(jié)論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內(nèi)切球體積為()A. B. C. D.3.關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),某同學(xué)通過下面的隨機(jī)模擬方法來估計(jì)的值:先用計(jì)算機(jī)產(chǎn)生個(gè)數(shù)對(duì),其中,都是區(qū)間上的均勻隨機(jī)數(shù),再統(tǒng)計(jì),能與構(gòu)成銳角三角形三邊長的數(shù)對(duì)的個(gè)數(shù)﹔最后根據(jù)統(tǒng)計(jì)數(shù)來估計(jì)的值.若,則的估計(jì)值為()A. B. C. D.4.若復(fù)數(shù)滿足(為虛數(shù)單位),則其共軛復(fù)數(shù)的虛部為()A. B. C. D.5.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.36.若雙曲線的焦距為,則的一個(gè)焦點(diǎn)到一條漸近線的距離為()A. B. C. D.7.已知函數(shù)是偶函數(shù),當(dāng)時(shí),函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.8.拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動(dòng)點(diǎn),若點(diǎn),則的最小值為()A. B. C. D.9.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.設(shè)雙曲線的一條漸近線為,且一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,則此雙曲線的方程為()A. B. C. D.11.已知四棱錐的底面為矩形,底面,點(diǎn)在線段上,以為直徑的圓過點(diǎn).若,則的面積的最小值為()A.9 B.7 C. D.12.已知定義在上的奇函數(shù),其導(dǎo)函數(shù)為,當(dāng)時(shí),恒有.則不等式的解集為().A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左右焦點(diǎn)分別為,過的直線與雙曲線左支交于兩點(diǎn),,的內(nèi)切圓的圓心的縱坐標(biāo)為,則雙曲線的離心率為________.14.展開式中,含項(xiàng)的系數(shù)為______.15.如圖,是圓的直徑,弦的延長線相交于點(diǎn)垂直的延長線于點(diǎn).求證:16.的展開式中,的系數(shù)是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形中,,,,沿對(duì)角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)已知橢圓C:(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-,0)、F2(,0).點(diǎn)M(1,0)與橢圓短軸的兩個(gè)端點(diǎn)的連線相互垂直.(1)求橢圓C的方程;(2)已知點(diǎn)N的坐標(biāo)為(3,2),點(diǎn)P的坐標(biāo)為(m,n)(m≠3).過點(diǎn)M任作直線l與橢圓C相交于A、B兩點(diǎn),設(shè)直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關(guān)系式.19.(12分)已知函數(shù).(1)若曲線的切線方程為,求實(shí)數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F(xiàn)分別是棱AB,PC的中點(diǎn).求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.21.(12分)已知拋物線的焦點(diǎn)為,點(diǎn),點(diǎn)為拋物線上的動(dòng)點(diǎn).(1)若的最小值為,求實(shí)數(shù)的值;(2)設(shè)線段的中點(diǎn)為,其中為坐標(biāo)原點(diǎn),若,求的面積.22.(10分)已知函數(shù),其中.(1)討論函數(shù)的零點(diǎn)個(gè)數(shù);(2)求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

由題可得函數(shù)的定義域?yàn)?,因?yàn)?,所以函?shù)為奇函數(shù),排除選項(xiàng)B;又,,所以排除選項(xiàng)A、C,故選D.2、D【解析】

設(shè)圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結(jié)合題中的結(jié)論即可求出該圓柱的內(nèi)切球體積.【詳解】設(shè)圓柱的底面半徑為,則其母線長為,因?yàn)閳A柱的表面積公式為,所以,解得,因?yàn)閳A柱的體積公式為,所以,由題知,圓柱內(nèi)切球的體積是圓柱體積的,所以所求圓柱內(nèi)切球的體積為.故選:D【點(diǎn)睛】本題考查圓柱的軸截面及表面積和體積公式;考查運(yùn)算求解能力;熟練掌握?qǐng)A柱的表面積和體積公式是求解本題的關(guān)鍵;屬于中檔題.3、B【解析】

先利用幾何概型的概率計(jì)算公式算出,能與構(gòu)成銳角三角形三邊長的概率,然后再利用隨機(jī)模擬方法得到,能與構(gòu)成銳角三角形三邊長的概率,二者概率相等即可估計(jì)出.【詳解】因?yàn)?,都是區(qū)間上的均勻隨機(jī)數(shù),所以有,,若,能與構(gòu)成銳角三角形三邊長,則,由幾何概型的概率計(jì)算公式知,所以.故選:B.【點(diǎn)睛】本題考查幾何概型的概率計(jì)算公式及運(yùn)用隨機(jī)數(shù)模擬法估計(jì)概率,考查學(xué)生的基本計(jì)算能力,是一個(gè)中檔題.4、D【解析】

由已知等式求出z,再由共軛復(fù)數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復(fù)數(shù)=-1+,虛部為1故選D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算和共軛復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.5、B【解析】

根據(jù)極值點(diǎn)處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計(jì)算即可.【詳解】解:由已知得,,,經(jīng)檢驗(yàn)滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.6、B【解析】

根據(jù)焦距即可求得參數(shù),再根據(jù)點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的焦距為,故可得,解得,不妨??;又焦點(diǎn),其中一條漸近線為,由點(diǎn)到直線的距離公式即可求的.故選:B.【點(diǎn)睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.7、A【解析】

根據(jù)圖象關(guān)于軸對(duì)稱可知關(guān)于對(duì)稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對(duì)稱圖象關(guān)于對(duì)稱時(shí),單調(diào)遞減時(shí),單調(diào)遞增又且,即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)奇偶性、對(duì)稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問題,關(guān)鍵是能夠通過奇偶性和對(duì)稱性得到函數(shù)的單調(diào)性,通過自變量的大小關(guān)系求得結(jié)果.8、B【解析】

通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準(zhǔn)線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當(dāng)是拋物線的切線時(shí),有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點(diǎn)睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.9、D【解析】

先化簡(jiǎn),再根據(jù),且AB求解.【詳解】因?yàn)椋忠驗(yàn)?,且AB,所以.故選:D【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.10、C【解析】

求得拋物線的焦點(diǎn)坐標(biāo),可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點(diǎn)為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點(diǎn)睛】本題主要考查了求雙曲線的方程,屬于中檔題.11、C【解析】

根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因?yàn)槠矫?,平面,所?又,,所以平面,則.易知,.在中,,即,化簡(jiǎn)得.在中,,.所以.因?yàn)椋?dāng)且僅當(dāng),時(shí)等號(hào)成立,所以.故選:C.【點(diǎn)睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.12、D【解析】

先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構(gòu)造函數(shù),則由題可知,所以在時(shí)為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【點(diǎn)睛】此題考查根據(jù)導(dǎo)函數(shù)構(gòu)造原函數(shù),偶函數(shù)解不等式等知識(shí)點(diǎn),屬于較難題目.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

由題意畫出圖形,設(shè)內(nèi)切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質(zhì)結(jié)臺(tái)雙曲線的定義,求得的內(nèi)切圓的圓心的縱坐標(biāo),結(jié)合已知列式,即可求得雙曲線的離心率.【詳解】設(shè)內(nèi)切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長為圓的半徑,由,,得,與重合,,,即——①,——②聯(lián)立①②解得:,又因圓心的縱坐標(biāo)為,.故答案為:【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),考查數(shù)形結(jié)合思想與運(yùn)算求解能力,屬于中檔題.14、2【解析】

變換得到,展開式的通項(xiàng)為,計(jì)算得到答案.【詳解】,的展開式的通項(xiàng)為:.含項(xiàng)的系數(shù)為:.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.15、證明見解析.【解析】試題分析:四點(diǎn)共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因?yàn)闉閳A的直徑,所以,又,則四點(diǎn)共圓,所以.又△∽△,所以,即,∴.16、【解析】

先將原式展開成,發(fā)現(xiàn)中不含,故只研究后面一項(xiàng)即可得解.【詳解】,依題意,只需求中的系數(shù),是.故答案為:-40【點(diǎn)睛】本題考查二項(xiàng)式定理性質(zhì),關(guān)鍵是先展開再利用排列組合思想解決,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】

(1)取的中點(diǎn),連.可證得,,于是可得平面,進(jìn)而可得結(jié)論成立.(2)運(yùn)用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點(diǎn),連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點(diǎn),連結(jié),∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設(shè),則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則在直角三角形中,可得,作于,則有平面幾何知識(shí)可得,∴.又可得,.∴,.設(shè)平面的一個(gè)法向量為,由,得,令,則得.又,設(shè)直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.【點(diǎn)睛】利用向量法求解直線和平面所成角時(shí),關(guān)鍵點(diǎn)是恰當(dāng)建立空間直角坐標(biāo)系,確定斜線的方向向量和平面的法向量.解題時(shí)通過平面的法向量和直線的方向向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角或鈍角的補(bǔ)角,取其余角就是斜線與平面所成的角.求解時(shí)注意向量的夾角與線面角間的關(guān)系.18、(1);(2)m-n-1=0【解析】試題分析:(1)利用M與短軸端點(diǎn)構(gòu)成等腰直角三角形,可求得b的值,進(jìn)而得到橢圓方程;(2)設(shè)出過M的直線l的方程,將l與橢圓C聯(lián)立,得到兩交點(diǎn)坐標(biāo)關(guān)系,然后將k1+k3表示為直線l斜率的關(guān)系式,化簡(jiǎn)后得k1+k3=2,于是可得m,n的關(guān)系式.試題解析:(1)由題意,c=,b=1,所以a=故橢圓C的方程為(2)①當(dāng)直線l的斜率不存在時(shí),方程為x=1,代入橢圓得,y=±不妨設(shè)A(1,),B(1,-)因?yàn)閗1+k3==2又k1+k3=2k2,所以k2=1所以m,n的關(guān)系式為=1,即m-n-1=0②當(dāng)直線l的斜率存在時(shí),設(shè)l的方程為y=k(x-1)將y=k(x-1)代入,整理得:(3k2+1)x2-6k2x+3k2-3=0設(shè)A(x1,y1),B(x2,y2),則又y1=k(x1-1),y2=k(x2-1)所以k1+k3======2所以2k2=2,所以k2==1所以m,n的關(guān)系式為m-n-1=0綜上所述,m,n的關(guān)系式為m-n-1=0.考點(diǎn):橢圓標(biāo)準(zhǔn)方程,直線與橢圓位置關(guān)系,19、(1);(2)或【解析】

(1)根據(jù)解析式求得導(dǎo)函數(shù),設(shè)切點(diǎn)坐標(biāo)為,結(jié)合導(dǎo)數(shù)的幾何意義可得方程,構(gòu)造函數(shù),并求得,由導(dǎo)函數(shù)求得有最小值,進(jìn)而可知由唯一零點(diǎn),即可代入求得的值;(2)將解析式代入,結(jié)合零點(diǎn)定義化簡(jiǎn)并分離參數(shù)得,構(gòu)造函數(shù),根據(jù)題意可知直線與曲線有兩個(gè)交點(diǎn);求得并令求得極值點(diǎn),列出表格判斷的單調(diào)性與極值,即可確定與有兩個(gè)交點(diǎn)時(shí)的取值范圍.【詳解】(1)依題意,,,設(shè)切點(diǎn)為,,故,故,則;令,,故當(dāng)時(shí),,當(dāng)時(shí),,故當(dāng)時(shí),函數(shù)有最小值,由于,故有唯一實(shí)數(shù)根0,即,則;(2)由,得.所以“在區(qū)間上有兩個(gè)零點(diǎn)”等價(jià)于“直線與曲線在有兩個(gè)交點(diǎn)”;由于.由,解得,.當(dāng)變化時(shí),與的變化情況如下表所示:30+0極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增.又因?yàn)?,,,,故?dāng)或時(shí),直線與曲線在上有兩個(gè)交點(diǎn),即當(dāng)或時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義應(yīng)用,由切線方程求參數(shù)值,構(gòu)造函數(shù)法求參數(shù)的取值范圍,函數(shù)零點(diǎn)的意義及綜合應(yīng)用,屬于難題.20、(1)見解析;(2)見解析【解析】

(1)取的中點(diǎn)構(gòu)造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【詳解】證明:(1)如圖,取的中點(diǎn),連接,,是棱的中點(diǎn),底面是矩形,,且,又,分別是棱,的中點(diǎn),,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點(diǎn)是棱的中點(diǎn),,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【點(diǎn)睛】本題主要考查線面平行的判定,面面垂直的判定,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論