數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(優(yōu)選16篇)_第1頁(yè)
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(優(yōu)選16篇)_第2頁(yè)
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(優(yōu)選16篇)_第3頁(yè)
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(優(yōu)選16篇)_第4頁(yè)
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(優(yōu)選16篇)_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(優(yōu)選16篇)名目第1篇2023年上半年小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)范文第2篇2023高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)集合第3篇高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)集合第4篇學(xué)校五班級(jí)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié):統(tǒng)計(jì)第5篇數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)之一元二次方程根與系數(shù)的關(guān)系第6篇五班級(jí)下冊(cè)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)第7篇小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)第8篇小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)參考第9篇四班級(jí)數(shù)學(xué)學(xué)問(wèn)點(diǎn)歸納總結(jié)第10篇八班級(jí)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)北師大版第11篇學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)之根的判別式第12篇定義與命題的數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)第13篇學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)中心對(duì)稱第14篇七班級(jí)上冊(cè)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)第15篇人教版高三數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)第16篇初三班級(jí)上冊(cè)數(shù)學(xué)學(xué)問(wèn)點(diǎn)歸納總結(jié)

【第1篇】2023年上半年小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)范文

1、小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn)(年齡問(wèn)題的三大特征)

年齡問(wèn)題:已知兩人的年齡,求若干年前或若干年后兩人年齡之間倍數(shù)關(guān)系的應(yīng)用題,叫做年齡問(wèn)題。

年齡問(wèn)題的三個(gè)基本特征

①兩個(gè)人的年齡差是不變的;

②兩個(gè)人的年齡是同時(shí)增加或者同時(shí)削減的;

③兩個(gè)人的年齡的倍數(shù)是發(fā)生變化的;

解題規(guī)律:抓住年齡差是個(gè)不變的數(shù)(常數(shù)),而倍數(shù)卻是每年都在變化的這個(gè)關(guān)鍵。

例:父親今年54歲,兒子今年18歲,幾年前父親的年齡是兒子年齡的7倍

⑴父子年齡的差是多少?5418=36(歲)

⑵幾年前父親年齡比兒子年齡大幾倍?7-1=6

⑶幾年前兒子多少歲?366=6(歲)

⑷幾年前父親年齡是兒子年齡的7倍?186=12(年)

答:xx年前父親的年齡是兒子年齡的7倍。

2、小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn)(歸一問(wèn)題特點(diǎn))

歸一問(wèn)題的基本特點(diǎn)

問(wèn)題中有一個(gè)不變的量,一般是那個(gè)"單一量',題目一般用"照這樣的速度'等詞語(yǔ)來(lái)表示。

關(guān)鍵問(wèn)題:依據(jù)題目中的條件確定并求出單一量;

復(fù)合應(yīng)用題中的某些問(wèn)題,解題時(shí)需先依據(jù)已知條件,求出一個(gè)單位量的數(shù)值,如單位面積的產(chǎn)量、單位時(shí)間的工作量、單位物品的價(jià)格、單位時(shí)間所行的距離等等,然后,再依據(jù)題中的條件和問(wèn)題求出結(jié)果。這樣的應(yīng)用題就叫做歸一問(wèn)題,這種解題方法叫做"歸一法'。有些歸一問(wèn)題可以實(shí)行同類數(shù)量之間進(jìn)行倍數(shù)比較的方法進(jìn)行解答,這種方法叫做倍比法。

由上所述,解答歸一問(wèn)題的關(guān)鍵是求出單位量的數(shù)值,再依據(jù)題中"照這樣計(jì)算'、"用同樣的速度'等句子的含義,抓準(zhǔn)題中數(shù)量的對(duì)應(yīng)關(guān)系,列出算式,求得問(wèn)題的解決。

3、小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn)(植樹(shù)問(wèn)題總結(jié))

植樹(shù)問(wèn)題基本類型

在直線或者不封閉的曲線上植樹(shù),兩端都植樹(shù)

在直線或者不封閉的曲線上植樹(shù),兩端都不植樹(shù)

在直線或者不封閉的曲線上植樹(shù),只有一端植樹(shù)

封閉曲線上植樹(shù)

基本公式

棵數(shù)=段數(shù)+1棵距段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)-1

棵距段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)棵距段數(shù)=總長(zhǎng)

關(guān)鍵問(wèn)題

確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系

4、小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn)(雞兔同籠問(wèn)題)

雞兔同籠問(wèn)題基本概念:雞兔同籠問(wèn)題又稱為置換問(wèn)題、假設(shè)問(wèn)題,就是把假設(shè)錯(cuò)的那部分置換出來(lái);

基本思路

①假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣)

②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;

③每個(gè)事物造成的差是固定的,從而找出消失這個(gè)差的緣由;

④再依據(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去消失的差。

基本公式

①把全部雞假設(shè)成兔子:雞數(shù)=(兔腳數(shù)總頭數(shù)-總腳數(shù))(兔腳數(shù)-雞腳數(shù))

②把全部兔子假設(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)總頭數(shù))(兔腳數(shù)一雞腳數(shù))

關(guān)鍵問(wèn)題:找出總量的差與單位量的差。

5、小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn)(盈虧問(wèn)題)

盈虧問(wèn)題基本概念:肯定量的對(duì)象,根據(jù)某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:根據(jù)另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭?

基本思路:先將兩種安排方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,依據(jù)這個(gè)關(guān)系求出參與安排的總份數(shù),然后依據(jù)題意求出對(duì)象的總量.

基本題型

①一次有余數(shù),另一次不足;

基本公式:總份數(shù)=(余數(shù)+不足數(shù))兩次每份數(shù)的差

②當(dāng)兩次都有余數(shù);

基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))兩次每份數(shù)的差

③當(dāng)兩次都不足;

基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))兩次每份數(shù)的差

基本特點(diǎn):對(duì)象總量和總的組數(shù)是不變的。

關(guān)鍵問(wèn)題:確定對(duì)象總量和總的組數(shù)。

做為一個(gè)seoer,我們必需要做的就是提高網(wǎng)站的排名和維護(hù)好排名,這就是我們的工作。但請(qǐng)不要不擇手段,別什么技術(shù)都有了,pr卻丟了。目前許多seo從業(yè)者缺乏的就是技巧,從技術(shù)中探究技巧,這才是最重的,也是不簡(jiǎn)單被戰(zhàn)勝的方法。...

本文是我為大家搜集的優(yōu)秀的職中半期總結(jié),供大家參考!盼望可以關(guān)心到大家!xx年上學(xué)期是我校謀求進(jìn)展,夯實(shí)基礎(chǔ)的一學(xué)期,也是推動(dòng)內(nèi)涵進(jìn)展,不斷提升教育教學(xué)質(zhì)量,強(qiáng)化管理的一學(xué)期。

依據(jù)學(xué)校的要求,根據(jù)照鏡子、正衣冠、洗洗澡、治治病的總要求,對(duì)比自己各方面,現(xiàn)總結(jié)存在的問(wèn)題一、存在問(wèn)題(一)形式主義方面1、理論學(xué)問(wèn)研讀還不夠深化。盡管自己是堅(jiān)決擁護(hù)黨的領(lǐng)導(dǎo),但對(duì)黨的學(xué)問(wèn)學(xué)習(xí)了解得不夠全面。

通過(guò)學(xué)習(xí)我熟悉到《信息技術(shù)教育》是近幾年進(jìn)展起來(lái)的新興學(xué)科,是學(xué)科教育的重要組成部分之一,同時(shí)也是計(jì)算機(jī)教育專業(yè)最重要的主干課程。本課程以現(xiàn)代教學(xué)觀為指導(dǎo),以建構(gòu)主義理論作為主線,介紹了我國(guó)信息技術(shù)教育的觀念、目標(biāo)、任務(wù)...

本學(xué)期結(jié)束了,總結(jié)這一學(xué)期的學(xué)習(xí)和生活,應(yīng)當(dāng)說(shuō)比前兩個(gè)學(xué)年有了很大提高,在學(xué)習(xí)上,課內(nèi)態(tài)度端正,目標(biāo)明確;課外愛(ài)好廣泛,留意多方學(xué)問(wèn)擴(kuò)展,提高自身思想文化素養(yǎng),在生活上,養(yǎng)成良好的生活習(xí)慣,生活充實(shí)有條理,熱忱大方,誠(chéng)懇守...

把握黨的建設(shè)的前進(jìn)方向,是我們黨加強(qiáng)自身建設(shè)的一條重要?dú)v史閱歷。在黨的xx屆四中全會(huì)上,我們黨科學(xué)分析了黨所處的歷史環(huán)境和應(yīng)擔(dān)當(dāng)?shù)臍v史使命,再次指出了黨的建設(shè)的前進(jìn)方向。

一、形式主義方面市、縣領(lǐng)導(dǎo)班子和領(lǐng)導(dǎo)干部。(1)搞形象工程、政績(jī)工程。有的政績(jī)觀存在偏差,只顧眼前、不顧長(zhǎng)遠(yuǎn),只干領(lǐng)導(dǎo)看得見(jiàn)的事、不干群眾最期盼的事。有的唯gdp,圈地造城,盲目建新區(qū)、搞廣場(chǎng)、樹(shù)地標(biāo),負(fù)債累累,寅吃卯糧。

在這一期間大家暢所欲言,各抒己見(jiàn),濃濃的學(xué)習(xí)氛圍不言而露,盡管不曾謀面,但遠(yuǎn)程研修拉近了我們的距離。全面提升了自己的基本素養(yǎng),和業(yè)務(wù)綜合力量,對(duì)于今后的進(jìn)展起到了樂(lè)觀的促進(jìn)作用。

【第2篇】2023高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)集合

XX高一數(shù)學(xué)集合學(xué)問(wèn)點(diǎn)總結(jié)

一.學(xué)問(wèn)歸納:

1.集合的有關(guān)概念。

1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素

留意:①集合與集合的元素是兩個(gè)不同的概念,教科書中是通過(guò)描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。

②集合中的元素具有確定性(a?a和a?a,二者必居其一)、互異性(若a?a,b?a,則a≠b)和無(wú)序性({a,b}與{b,a}表示同一個(gè)集合)。

③集合具有兩方面的意義,即:凡是符合條件的對(duì)象都是它的元素;只要是它的元素就必需符號(hào)條件

2)集合的表示方法:常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無(wú)限集,空集。

4)常用數(shù)集:n,z,q,r,n*

2.子集、交集、并集、補(bǔ)集、空集、全集等概念。

1)子集:若對(duì)x∈a都有x∈b,則ab(或ab);

2)真子集:ab且存在x0∈b但x0a;記為ab(或,且)

3)交集:a∩b={x|x∈a且x∈b}

4)并集:a∪b={x|x∈a或x∈b}

5)補(bǔ)集:cua={x|xa但x∈u}

留意:①?a,若a≠?,則?a;

②若,,則;

③若且,則a=b(等集)

3.弄清集合與元素、集合與集合的關(guān)系,把握有關(guān)的術(shù)語(yǔ)和符號(hào),特殊要留意以下的符號(hào):(1)與、?的區(qū)分;(2)與的區(qū)分;(3)與的區(qū)分。

4.有關(guān)子集的幾個(gè)等價(jià)關(guān)系

①a∩b=aab;②a∪b=bab;③abcuacub;

④a∩cub=空集cuab;⑤cua∪b=iab。

5.交、并集運(yùn)算的性質(zhì)

①a∩a=a,a∩?=?,a∩b=b∩a;②a∪a=a,a∪?=a,a∪b=b∪a;

③cu(a∪b)=cua∩cub,cu(a∩b)=cua∪cub;

6.有限子集的個(gè)數(shù):設(shè)集合a的元素個(gè)數(shù)是n,則a有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。

二.例題講解:

【例1】已知集合m={x|x=m+,m∈z},n={x|x=,n∈z},p={x|x=,p∈z},則m,n,p滿意關(guān)系

a)m=npb)mn=pc)mnpd)npm

分析一:從推斷元素的共性與區(qū)分入手。

解答一:對(duì)于集合m:{x|x=,m∈z};對(duì)于集合n:{x|x=,n∈z}

對(duì)于集合p:{x|x=,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以mn=p,故選b。

分析二:簡(jiǎn)潔列舉集合中的元素。

解答二:m={…,,…},n={…,,,,…},p={…,,,…},這時(shí)不要急于推斷三個(gè)集合間的關(guān)系,應(yīng)分析各集合中不同的元素。

=∈n,∈n,∴mn,又=m,∴mn,

=p,∴np又∈n,∴pn,故p=n,所以選b。

點(diǎn)評(píng):由于思路二只是停留在最初的歸納假設(shè),沒(méi)有從理論上解決問(wèn)題,因此提倡思路一,但思路二易人手。

變式:設(shè)集合,,則(b)

a.m=nb.mnc.nmd.

解:

當(dāng)時(shí),2k+1是奇數(shù),k+2是整數(shù),選b

【例2】定義集合a*b={x|x∈a且xb},若a={1,3,5,7},b={2,3,5},則a*b的子集個(gè)數(shù)為

a)1b)2c)3d)4

分析:確定集合a*b子集的個(gè)數(shù),首先要確定元素的個(gè)數(shù),然后再利用公式:集合a={a1,a2,…,an}有子集2n個(gè)來(lái)求解。

解答:∵a*b={x|x∈a且xb},∴a*b={1,7},有兩個(gè)元素,故a*b的子集共有22個(gè)。選d。

變式1:已知非空集合m{1,2,3,4,5},且若a∈m,則6?a∈m,那么集合m的個(gè)數(shù)為

a)5個(gè)b)6個(gè)c)7個(gè)d)8個(gè)

變式2:已知{a,b}a{a,b,c,d,e},求集合a.

解:由已知,集合中必需含有元素a,b.

集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

評(píng)析本題集合a的個(gè)數(shù)實(shí)為集合{c,d,e}的真子集的個(gè)數(shù),所以共有個(gè).

【例3】已知集合a={x|x2+px+q=0},b={x|x2?4x+r=0},且a∩b={1},a∪b={?2,1,3},求實(shí)數(shù)p,q,r的值。

解答:∵a∩b={1}∴1∈b∴12?4×1+r=0,r=3.

∴b={x|x2?4x+r=0}={1,3},∵a∪b={?2,1,3},?2b,∴?2∈a

∵a∩b={1}∴1∈a∴方程x2+px+q=0的兩根為-2和1,

∴∴

變式:已知集合a={x|x2+bx+c=0},b={x|x2+mx+6=0},且a∩b={2},a∪b=b,求實(shí)數(shù)b,c,m的值.

解:∵a∩b={2}∴1∈b∴22+m?2+6=0,m=-5

∴b={x|x2-5x+6=0}={2,3}∵a∪b=b∴

又∵a∩b={2}∴a={2}∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合a={x|(x-1)(x+1)(x+2)0},集合b滿意:a∪b={x|x-2},且a∩b={x|1

分析:先化簡(jiǎn)集合a,然后由a∪b和a∩b分別確定數(shù)軸上哪些元素屬于b,哪些元素不屬于b。

解答:a={x|-21}。由a∩b={x|1-2}可知[-1,1]b,而(-∞,-2)∩b=ф。

綜合以上各式有b={x|-1≤x≤5}

變式1:若a={x|x3+2x2-8x0},b={x|x2+ax+b≤0},已知a∪b={x|x-4},a∩b=φ,求a,b。(答案:a=-2,b=0)

點(diǎn)評(píng):在解有關(guān)不等式解集一類集合問(wèn)題,應(yīng)留意用數(shù)形結(jié)合的方法,作出數(shù)軸來(lái)解之。

變式2:設(shè)m={x|x2-2x-3=0},n={x|ax-1=0},若m∩n=n,求全部滿意條件的a的集合。

解答:m={-1,3},∵m∩n=n,∴nm

①當(dāng)時(shí),ax-1=0無(wú)解,∴a=0②

綜①②得:所求集合為{-1,0,}

【例5】已知集合,函數(shù)y=log2(ax2-2x+2)的定義域?yàn)閝,若p∩q≠φ,求實(shí)數(shù)a的取值范圍。

分析:先將原問(wèn)題轉(zhuǎn)化為不等式ax2-2x+20在有解,再利用參數(shù)分別求解。

解答:(1)若,在內(nèi)有有解

令當(dāng)時(shí),

所以a-4,所以a的取值范圍是

變式:若關(guān)于x的方程有實(shí)根,求實(shí)數(shù)a的取值范圍。

解答:

點(diǎn)評(píng):解決含參數(shù)問(wèn)題的題目,一般要進(jìn)行分類爭(zhēng)論,但并不是全部的問(wèn)題都要爭(zhēng)論,怎樣可以避開(kāi)爭(zhēng)論是我們思索此類問(wèn)題的關(guān)鍵。

【第3篇】高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)集合

一.學(xué)問(wèn)歸納:

1.集合的有關(guān)概念。

1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素

留意:①集合與集合的元素是兩個(gè)不同的概念,教科書中是通過(guò)描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。

②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無(wú)序性({a,b}與{b,a}表示同一個(gè)集合)。

③集合具有兩方面的意義,即:凡是符合條件的對(duì)象都是它的元素;只要是它的元素就必需符號(hào)條件

2)集合的表示方法:常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無(wú)限集,空集。

4)常用數(shù)集:N,Z,Q,R,N*

2.子集、交集、并集、補(bǔ)集、空集、全集等概念。

1)子集:若對(duì)x∈A都有x∈B,則AB(或AB);

2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

3)交集:A∩B={x|x∈A且x∈B}

4)并集:A∪B={x|x∈A或x∈B}

5)補(bǔ)集:CUA={x|xA但x∈U}

留意:①?A,若A≠?,則?A;

②若,,則;

③若且,則A=B(等集)

3.弄清集合與元素、集合與集合的關(guān)系,把握有關(guān)的術(shù)語(yǔ)和符號(hào),特殊要留意以下的符號(hào):(1)與、?的區(qū)分;(2)與的區(qū)分;(3)與的區(qū)分。

4.有關(guān)子集的幾個(gè)等價(jià)關(guān)系

①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、并集運(yùn)算的性質(zhì)

①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

6.有限子集的個(gè)數(shù):設(shè)集合A的元素個(gè)數(shù)是n,則A有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。

二.例題講解:

【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿意關(guān)系

A)M=NPB)MN=PC)MNPD)NPM

分析一:從推斷元素的共性與區(qū)分入手。

解答一:對(duì)于集合M:{x|x=,m∈Z};對(duì)于集合N:{x|x=,n∈Z}

對(duì)于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,故選B。

分析二:簡(jiǎn)潔列舉集合中的元素。

解答二:M={…,,…},N={…,,,,…},P={…,,,…},這時(shí)不要急于推斷三個(gè)集合間的關(guān)系,應(yīng)分析各集合中不同的元素。

=∈N,∈N,∴MN,又=M,∴MN,

=P,∴NP又∈N,∴PN,故P=N,所以選B。

點(diǎn)評(píng):由于思路二只是停留在最初的歸納假設(shè),沒(méi)有從理論上解決問(wèn)題,因此提倡思路一,但思路二易人手。

變式:設(shè)集合,,則(B)

A.M=NB.MNC.NMD.

解:

當(dāng)時(shí),2k+1是奇數(shù),k+2是整數(shù),選B

【例2】定義集合A*B={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},則A*B的子集個(gè)數(shù)為

A)1B)2C)3D)4

分析:確定集合A*B子集的個(gè)數(shù),首先要確定元素的個(gè)數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個(gè)來(lái)求解。

解答:∵A*B={x|x∈A且xB},∴A*B={1,7},有兩個(gè)元素,故A*B的子集共有22個(gè)。選D。

變式1:已知非空集合M{1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個(gè)數(shù)為

A)5個(gè)B)6個(gè)C)7個(gè)D)8個(gè)

變式2:已知{a,b}A{a,b,c,d,e},求集合A.

解:由已知,集合中必需含有元素a,b.

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

評(píng)析本題集合A的個(gè)數(shù)實(shí)為集合{c,d,e}的真子集的個(gè)數(shù),所以共有個(gè).

【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實(shí)數(shù)p,q,r的值。

解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.

∴B={x|x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A

∵A∩B={1}∴1∈A∴方程x2+px+q=0的兩根為-2和1,

∴∴

變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實(shí)數(shù)b,c,m的值.

解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5

∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴

又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合A={x|(x-1)(x+1)(x+2)0},集合B滿意:A∪B={x|x-2},且A∩B={x|1

分析:先化簡(jiǎn)集合A,然后由A∪B和A∩B分別確定數(shù)軸上哪些元素屬于B,哪些元素不屬于B。

解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。

綜合以上各式有B={x|-1≤x≤5}

變式1:若A={x|x3+2x2-8x0},B={x|x2+ax+b≤0},已知A∪B={x|x-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

點(diǎn)評(píng):在解有關(guān)不等式解集一類集合問(wèn)題,應(yīng)留意用數(shù)形結(jié)合的方法,作出數(shù)軸來(lái)解之。

變式2:設(shè)M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求全部滿意條件的a的集合。

解答:M={-1,3},∵M(jìn)∩N=N,∴NM

①當(dāng)時(shí),ax-1=0無(wú)解,∴a=0②

綜①②得:所求集合為{-1,0,}

【例5】已知集合,函數(shù)y=log2(ax2-2x+2)的定義域?yàn)镼,若P∩Q≠Φ,求實(shí)數(shù)a的取值范圍。

分析:先將原問(wèn)題轉(zhuǎn)化為不等式ax2-2x+20在有解,再利用參數(shù)分別求解。

解答:(1)若,在內(nèi)有有解

令當(dāng)時(shí),

所以a-4,所以a的取值范圍是

變式:若關(guān)于x的方程有實(shí)根,求實(shí)數(shù)a的取值范圍。

解答:

點(diǎn)評(píng):解決含參數(shù)問(wèn)題的題目,一般要進(jìn)行分類爭(zhēng)論,但并不是全部的問(wèn)題都要爭(zhēng)論,怎樣可以避開(kāi)爭(zhēng)論是我們思索此類問(wèn)題的關(guān)鍵。

【第4篇】學(xué)校五班級(jí)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié):統(tǒng)計(jì)

學(xué)校五班級(jí)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié):統(tǒng)計(jì)

學(xué)問(wèn)點(diǎn):1、熟悉扇形統(tǒng)計(jì)圖,了解扇形統(tǒng)計(jì)圖的特點(diǎn)與作用。2、能讀懂扇形統(tǒng)計(jì)圖,并能從中獲得相應(yīng)的數(shù)學(xué)信息。

奧運(yùn)會(huì)(統(tǒng)計(jì)圖的.選擇)

學(xué)問(wèn)點(diǎn):1、了解條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖的特點(diǎn)。條形統(tǒng)計(jì)圖便于看出數(shù)據(jù)的多少;扇形統(tǒng)計(jì)圖能清晰地看出整體與部分之間的關(guān)系;折線統(tǒng)計(jì)圖能看出數(shù)據(jù)的變化趨勢(shì)。2、能夠依據(jù)需要選擇最為直觀、有效地統(tǒng)計(jì)圖表示數(shù)據(jù)。

中位數(shù)和眾數(shù)

學(xué)問(wèn)點(diǎn):1、中位數(shù)和眾數(shù)的意義。將一組數(shù)據(jù)從小到大(或從大到小)排列,中間的數(shù)稱為這2、中位數(shù)和眾數(shù)的求法。將一組數(shù)據(jù)按大小的挨次排列,假如是奇數(shù)個(gè)數(shù)據(jù),中間的數(shù)就為這組數(shù)據(jù)的中位數(shù),假如是偶數(shù)個(gè)數(shù)據(jù),中間兩個(gè)數(shù)的平均數(shù)為這組數(shù)據(jù)的中位數(shù)。眾數(shù),就是一組數(shù)據(jù)中消失次數(shù)最多的,有可能是多個(gè)眾數(shù)。3、能依據(jù)詳細(xì)的問(wèn)題,選擇合適的統(tǒng)計(jì)兩表示數(shù)據(jù)的不同特征。

【第5篇】數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)之一元二次方程根與系數(shù)的關(guān)系

數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)之一元二次方程根與系數(shù)的關(guān)系

學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)之一元二次方程根與系數(shù)的關(guān)系

同學(xué)們做好筆記啦,下面的我為大家整合的.是學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)大全之一元二次方程根與系數(shù)的關(guān)系。

上述為大家整合的學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)大全之一元二次方程根與系數(shù)的關(guān)系,接下來(lái)還有更多的學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)等著同學(xué)們哦。想要了解更多更全的學(xué)校數(shù)學(xué)學(xué)問(wèn)就來(lái)關(guān)注吧。

學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié):平面直角坐標(biāo)系

下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),盼望同學(xué)們很好的把握下面的內(nèi)容。

平面直角坐標(biāo)系

平面直角坐標(biāo)系:在平面內(nèi)畫兩條相互垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③相互垂直④原點(diǎn)重合

三個(gè)規(guī)定:

①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

②單位長(zhǎng)度的規(guī)定;一般狀況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必需相同。

③象限的規(guī)定:右上為第一象限、左上為其次象限、左下為第三象限、右下為第四象限。

信任上面對(duì)平面直角坐標(biāo)系學(xué)問(wèn)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的把握了吧,盼望同學(xué)們都能考試勝利。

【第6篇】五班級(jí)下冊(cè)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)

新人教版五班級(jí)下冊(cè)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)范例

學(xué)校是我們整個(gè)學(xué)業(yè)生涯的基礎(chǔ),所以小伴侶們肯定要培育良好的學(xué)習(xí)習(xí)慣,為同學(xué)們特殊供應(yīng)了新人教版五班級(jí)下冊(cè)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié),盼望對(duì)大家的學(xué)習(xí)有所關(guān)心!

1、整除:被除數(shù)、除數(shù)和商都是自然數(shù),并且沒(méi)有余數(shù)。整數(shù)與自然數(shù)的關(guān)系:整數(shù)包括自然數(shù)。

2、因數(shù)、倍數(shù):大數(shù)能被小數(shù)整除時(shí),大數(shù)是小數(shù)的倍數(shù),小數(shù)是大數(shù)的因數(shù)。例:12是6的倍數(shù),6是12的因數(shù)。(1)數(shù)a能被b整除,那么a就是b的倍數(shù),b就是a的因數(shù)。因數(shù)和倍數(shù)是相互依存的,不能單獨(dú)存在。(2)一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,其中最小的因數(shù)是1,最大的因數(shù)是它本身。

一個(gè)數(shù)的因數(shù)的求法:成對(duì)地按挨次找。(3)一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無(wú)限的,最小的倍數(shù)是它本身。一個(gè)數(shù)的倍數(shù)的求法:依次乘以自然數(shù)。(4)2、3、5的倍數(shù)特征1)個(gè)位上是0,2,4,6,8的數(shù)都是2的倍數(shù)。2)一個(gè)數(shù)各位上的數(shù)的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)。..3)個(gè)位上是0或5的數(shù),是5的倍數(shù)。4)能同時(shí)被2、3、5整除(也就是2、3、5的倍數(shù))的最大的兩位數(shù)是90,最小的三位數(shù)是120。同時(shí)滿意2、3、5的'倍數(shù),實(shí)際是求2×3×5=30的倍數(shù)。5)假如一個(gè)數(shù)同時(shí)是2和5的倍數(shù),那它的個(gè)位上的數(shù)字肯定是0。3、完全數(shù):除了它本身以外全部的因數(shù)的和等于它本身的數(shù)叫做完全數(shù)。如:6的因數(shù)有:1、2、3(6除外),剛好1+2+3=6,所以6是完全數(shù),小的完全數(shù)有6、28等

4:自然數(shù)按能不能被2整除來(lái)分:奇數(shù)、偶數(shù)。奇數(shù):不能被2整除的數(shù)。叫奇數(shù)。也就是個(gè)位上是1、3、5、7、9的數(shù)。偶數(shù):能被2整除的數(shù)叫偶數(shù)(0也是偶數(shù)),也就是個(gè)位上是0、2、4、6、8的數(shù)。最小的奇數(shù)是1,最小的偶數(shù)是0.關(guān)系:奇數(shù)+、-偶數(shù)=奇數(shù)奇數(shù)+、-奇數(shù)=偶數(shù)偶數(shù)+、-偶數(shù)=偶數(shù)。5、自然數(shù)按因數(shù)的個(gè)數(shù)來(lái)分:質(zhì)數(shù)、合數(shù)、1、0四類.質(zhì)數(shù)(或素?cái)?shù)):只有1和它本身兩個(gè)因數(shù)。合數(shù):除了1和它本身還有別的因數(shù)(至少有三個(gè)因數(shù):1、它本身、別的因數(shù))。1:只有1個(gè)因數(shù)?!?”既不是質(zhì)數(shù),也不是合數(shù)。0:最小的質(zhì)數(shù)是2,最小的合數(shù)是4,連續(xù)的兩個(gè)質(zhì)數(shù)是2、3。每個(gè)合數(shù)都可以由幾個(gè)質(zhì)數(shù)相乘得到,質(zhì)數(shù)相乘肯定得合數(shù)。20以內(nèi)的質(zhì)數(shù):有8個(gè)(2、3、5、7、11、13、17、19)100以內(nèi)的質(zhì)數(shù)有25個(gè):2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97100以內(nèi)找質(zhì)數(shù)、合數(shù)的技巧:看是否是2、3、5、7、11、13…的倍數(shù),是的就是合數(shù),不是的就是質(zhì)數(shù)。關(guān)系:奇數(shù)×奇數(shù)=奇數(shù)質(zhì)數(shù)×質(zhì)數(shù)=合數(shù)6、最大、最小a的最小因數(shù)是:1;最小的奇數(shù)是:1;a的最大因數(shù)是:a;最小的偶數(shù)是:0;a的最小倍數(shù)是:a;最小的質(zhì)數(shù)是:2;最小的自然數(shù)是:0;最小的合數(shù)是:4;7、分解質(zhì)因數(shù):把一個(gè)合數(shù)分解成多個(gè)質(zhì)數(shù)相乘的形式。用短除法分解質(zhì)因數(shù)(一個(gè)合數(shù)寫成幾個(gè)質(zhì)數(shù)相乘的形式)。...比如:30分解質(zhì)因數(shù)是:(30=2×3×5)8、互質(zhì)數(shù):公因數(shù)只有1的兩個(gè)非零自然數(shù),叫做互質(zhì)數(shù)。兩個(gè)質(zhì)數(shù)的互質(zhì)數(shù):5和7兩個(gè)合數(shù)的互質(zhì)數(shù):8和9一質(zhì)一合的互質(zhì)數(shù):7和8兩數(shù)互質(zhì)的特別狀況:⑴1和任何自然數(shù)互質(zhì);⑵相鄰兩個(gè)自然數(shù)互質(zhì);⑶兩個(gè)質(zhì)數(shù)肯定互質(zhì);⑷2和全部奇數(shù)互質(zhì);⑸質(zhì)數(shù)與比它小的合數(shù)互質(zhì);

【第7篇】小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)

小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)

我今日為大家?guī)?lái)小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn),盼望您讀后有所收獲!

小升初數(shù)學(xué)學(xué)問(wèn)總結(jié):算術(shù)規(guī)律

1、加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。

2、加法結(jié)合律:a+b=b+a

3、乘法交換律:ab=ba

4、乘法結(jié)合律:abc=a(bc)

5、乘法安排律:ab+ac=ab+c

6、除法的性質(zhì):abc=a(bc)

7、除法的性質(zhì):在除法里,被除數(shù)和除數(shù)同時(shí)擴(kuò)大(或縮小)相同的倍數(shù),商不變。o除以任何不是o的數(shù)都得o。簡(jiǎn)便乘法:被乘數(shù)、乘數(shù)末尾有o的乘法,可以先把o前面的相乘,零不參與運(yùn)算,有幾個(gè)零都落下,添在積的末尾。

8、有余數(shù)的除法:被除數(shù)=商除數(shù)+余數(shù)

小升初數(shù)學(xué)學(xué)問(wèn)總結(jié):方程、代數(shù)與等式

等式:等號(hào)左邊的數(shù)值與等號(hào)右邊的數(shù)值相等的式子叫做等式。等式的基本性質(zhì):等式兩邊同時(shí)乘以(或除以)一個(gè)相同的數(shù),等式仍舊成立。

方程式:含有未知數(shù)的等式叫方程式。

一元一次方程式:含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是一次的等式叫做一元一次方程式。學(xué)會(huì)一元一次方程式的例法及計(jì)算。即例出代有的算式并計(jì)算。

代數(shù):代數(shù)就是用字母代替數(shù)。

代數(shù)式:用字母表示的式子叫做代數(shù)式。如:3x=ab+c

分?jǐn)?shù)

分?jǐn)?shù):把單位1平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分?jǐn)?shù)。

分?jǐn)?shù)大小的比較:同分母的分?jǐn)?shù)相比較,分子大的大,分子小的小。異分母的分?jǐn)?shù)相比較,先通分然后再比較;若分子相同,分母大的反而小。

分?jǐn)?shù)的加減法則:同分母的分?jǐn)?shù)相加減,只把分子相加減,分母不變。異分母的分?jǐn)?shù)相加減,先通分,然后再加減。

分?jǐn)?shù)乘整數(shù),用分?jǐn)?shù)的分子和整數(shù)相乘的積作分子,分母不變。

分?jǐn)?shù)乘分?jǐn)?shù),用分子相乘的積作分子,分母相乘的積作為分母。

分?jǐn)?shù)的加、減法則:同分母的分?jǐn)?shù)相加減,只把分子相加減,分母不變。異分母的分?jǐn)?shù)相加減,先通分,然后再加減。

倒數(shù)的概念:1.假如兩個(gè)數(shù)乘積是1,我們稱一個(gè)是另一個(gè)的倒數(shù)。這兩個(gè)數(shù)互為倒數(shù)。1的倒數(shù)是1,0沒(méi)有倒數(shù)。

分?jǐn)?shù)除以整數(shù)(0除外),等于分?jǐn)?shù)乘以這個(gè)整數(shù)的倒數(shù)。

分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以同一個(gè)數(shù)(0除外),分?jǐn)?shù)的大小

分?jǐn)?shù)的除法則:除以一個(gè)數(shù)(0除外),等于乘這個(gè)數(shù)的倒數(shù)。

真分?jǐn)?shù):分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù)。

假分?jǐn)?shù):分子比分母大或者分子和分母相等的分?jǐn)?shù)叫做假分?jǐn)?shù)。假分?jǐn)?shù)大于或等于1。

帶分?jǐn)?shù):把假分?jǐn)?shù)寫成整數(shù)和真分?jǐn)?shù)的'形式,叫做帶分?jǐn)?shù)。

分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以同一個(gè)數(shù)(0除外),分?jǐn)?shù)的大小不變。

小升初數(shù)學(xué)學(xué)問(wèn)總結(jié):體積和表面積

三角形的面積=底高2。公式s=ah2

正方形的面積=邊長(zhǎng)邊長(zhǎng)公式s=a2

長(zhǎng)方形的面積=長(zhǎng)寬公式s=ab

平行四邊形的面積=底高公式s=ah

梯形的面積=(上底+下底)高2公式s=(a+b)h2

內(nèi)角和:三角形的內(nèi)角和=180度。

長(zhǎng)方體的表面積=(長(zhǎng)寬+長(zhǎng)高+寬高)2公式:s=(ab+ac+bc)2

正方體的表面積=棱長(zhǎng)棱長(zhǎng)6公式:s=6a2

長(zhǎng)方體的體積=長(zhǎng)寬高公式:v=abh

長(zhǎng)方體(或正方體)的體積=底面積高公式:v=abh

正方體的體積=棱長(zhǎng)棱長(zhǎng)棱長(zhǎng)公式:v=a3

圓的周長(zhǎng)=直徑公式:l=r

圓的面積=半徑半徑公式:s=r2

圓柱的表(側(cè))面積:圓柱的表(側(cè))面積等于底面的周長(zhǎng)乘高。公式:s=ch=rh

圓柱的表面積:圓柱的表面積等于底面的周長(zhǎng)乘高再加上兩頭的圓的面積。公式:s=ch+2s=ch+2r2

圓柱的體積:圓柱的體積等于底面積乘高。公式:v=sh

圓錐的體積=1/3底面積高。公式:v=1/3sh

上文是小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn),盼望文章對(duì)您有所關(guān)心!

【第8篇】小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)參考

關(guān)于小升初數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)參考

一、基本概念和符號(hào):

1、整除:假如一個(gè)整數(shù)a,除以一個(gè)自然數(shù)b,得到一個(gè)整數(shù)商c,而且沒(méi)有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。

2、常用符號(hào):整除符號(hào)“|”,不能整除符號(hào)“”;由于符號(hào)“∵”,所以的符號(hào)“∴”;

二、整除推斷方法:

1.能被3、9整除:各個(gè)數(shù)位上數(shù)字的和能被3、9整除。

2能被7整除:

①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。

②逐次去掉最終一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。

3.能被11整除:

①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。

②奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。

③逐次去掉最終一位數(shù)字并減去末位數(shù)字后能被11整除。

4.能被2、5整除:末位上的數(shù)字能被2、5整除。

5.能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。

6.能被8、125整除:末三位的'數(shù)字所組成的數(shù)能被8、125整除。

7.能被13整除:

①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。

②逐次去掉最終一位數(shù)字并減去末位數(shù)字的9倍后能被13整除。

【第9篇】四班級(jí)數(shù)學(xué)學(xué)問(wèn)點(diǎn)歸納總結(jié)

四班級(jí)數(shù)學(xué)學(xué)問(wèn)點(diǎn)歸納總結(jié)

四班級(jí)數(shù)學(xué)學(xué)問(wèn)點(diǎn)

(一)“大數(shù)的熟悉”:

1.學(xué)問(wèn)技能目標(biāo):鞏固所學(xué)的計(jì)數(shù)單位和相鄰兩個(gè)單位之間的進(jìn)率,把握數(shù)位挨次表,能正確地讀寫大數(shù),把握改寫和省略的方法。

2.復(fù)習(xí)學(xué)問(wèn)點(diǎn)

(1)復(fù)習(xí)數(shù)位挨次表:包括什么叫數(shù)位、計(jì)數(shù)單位、數(shù)級(jí)?每相鄰兩個(gè)計(jì)數(shù)單位之間有什么關(guān)系?

(2)多位數(shù)的讀寫法的方法是什么?

(3)改寫和省略的方法是什么?

(4)如何比較數(shù)的大小?

3.對(duì)應(yīng)練習(xí)

(1)讀出下面各數(shù)。

62315797005008239804000001000400070

4003000023674001000061540000030708000000

(2)寫出下面各數(shù)

四千零二萬(wàn)一百零三二千零四十萬(wàn)四千零三十

一十億零五百六十八一百二十億四千零八萬(wàn)五千零四十

(3)改寫成以億做單位的數(shù):224100000000212000000000

(4)求近似數(shù)

265805602527641880808(省略萬(wàn)后面的'尾數(shù))

34564631071233547811220805658(省略億后面的尾數(shù))

(5)用1、5、7、9和4個(gè)0按要求寫出八位數(shù)

最大的數(shù),最小的數(shù)是,一個(gè)0都不讀的數(shù),只讀出一個(gè)0的數(shù),要讀出2個(gè)0的數(shù)

(二)“乘除法”復(fù)習(xí)

1.學(xué)問(wèn)技能目標(biāo):通過(guò)復(fù)習(xí),鞏固所學(xué)的乘除法口算和筆算的計(jì)算方法,在計(jì)算過(guò)程中能敏捷應(yīng)用因數(shù)和積的關(guān)系、商變化的規(guī)律,正確嫻熟地計(jì)算。

2.復(fù)習(xí)學(xué)問(wèn)點(diǎn):

(1)復(fù)習(xí)口算

230×4=3×380=150×4=108×3=

350×2=70×5=2700÷30=1800÷60=

360÷90=2400÷60=8000÷40=4200÷60=

(2)不計(jì)算,直接寫出下面的積。

16×392=6272160×392=16×3920=

792÷24=33396÷12=1584÷48=

想一想,你是依據(jù)什么得出結(jié)果的?(積的變化規(guī)律和商的變換規(guī)律)

(3)筆算

145×37=540×18=508×60=509×57=

948÷19=676÷64=516÷43=338÷13=

【第10篇】八班級(jí)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)北師大版

函數(shù)及其相關(guān)概念

1、變量與常量

在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,假如對(duì)于x的每一個(gè)值,y都有確定的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。

2、函數(shù)解析式

用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

(1)解析法

兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

(2)列表法

把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。

(3)圖像法

用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

4、由函數(shù)解析式畫其圖像的一般步驟

(1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

(3)連線:根據(jù)自變量由小到大的挨次,把所描各點(diǎn)用平滑的曲線連接起來(lái)。

【第11篇】學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)之根的判別式

關(guān)于學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)之根的判別式

學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)之根的判別式

同學(xué)們留意啦,下面的我為大家整合的是學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)大全之根的判別式。

上述為大家整合的學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)大全之根的判別式,盼望同學(xué)們能仔細(xì)做好筆記了,接下來(lái)還有更多的學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)等著同學(xué)們哦。想要了解更多更全的學(xué)校數(shù)學(xué)學(xué)問(wèn)就來(lái)關(guān)注吧。

學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié):平面直角坐標(biāo)系

下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),盼望同學(xué)們很好的把握下面的內(nèi)容。

平面直角坐標(biāo)系

平面直角坐標(biāo)系:在平面內(nèi)畫兩條相互垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③相互垂直④原點(diǎn)重合

三個(gè)規(guī)定:

①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

②單位長(zhǎng)度的規(guī)定;一般狀況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必需相同。

③象限的規(guī)定:右上為第一象限、左上為其次象限、左下為第三象限、右下為第四象限。

信任上面對(duì)平面直角坐標(biāo)系學(xué)問(wèn)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的把握了吧,盼望同學(xué)們都能考試勝利。

學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。

平面直角坐標(biāo)系的構(gòu)成

在同一個(gè)平面上相互垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o稱為直角坐標(biāo)系的原點(diǎn)。

通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成學(xué)問(wèn)的講解學(xué)習(xí),盼望同學(xué)們對(duì)上面的內(nèi)容都能很好的把握,同學(xué)們仔細(xì)學(xué)習(xí)吧。

學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)學(xué)問(wèn)學(xué)習(xí),同學(xué)們仔細(xì)看看哦。

點(diǎn)的坐標(biāo)的性質(zhì)

建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

對(duì)于平面內(nèi)任意一點(diǎn)c,過(guò)點(diǎn)c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)c的坐標(biāo)。

一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

盼望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)學(xué)問(wèn)講解學(xué)習(xí),同學(xué)們都能很好的把握,信任同學(xué)們會(huì)在考試中取得優(yōu)異成果的。

學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn):因式分解的一般步驟

關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的學(xué)問(wèn)講解。

因式分解的一般步驟

假如多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

通常采納分組分解法,最終運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

留意:因式分解肯定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)當(dāng)是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必需是幾個(gè)整式的積的形式。

信任上面對(duì)因式分解的`一般步驟學(xué)問(wèn)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的把握了吧,盼望同學(xué)們會(huì)考出好成果。

學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn):因式分解

下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的學(xué)問(wèn)講解,盼望同學(xué)們仔細(xì)學(xué)習(xí)。

因式分解

因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

因式分解要素:①結(jié)果必需是整式②結(jié)果必需是積的形式③結(jié)果是等式④

因式分解與整式乘法的關(guān)系:m(a+b+c)

公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

提取公因式步驟:

①確定公因式。②確定商式③公因式與商式寫成積的形式。

分解因式留意;

①不準(zhǔn)丟字母

②不準(zhǔn)丟常數(shù)項(xiàng)留意查項(xiàng)數(shù)

③雙重括號(hào)化成單括號(hào)

④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式挨次排列

⑤相同因式寫成冪的形式

⑥首項(xiàng)負(fù)號(hào)放括號(hào)外

⑦括號(hào)內(nèi)同類項(xiàng)合并。

通過(guò)上面對(duì)因式分解內(nèi)容學(xué)問(wèn)的講解學(xué)習(xí),信任同學(xué)們已經(jīng)能很好的把握了吧,盼望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的關(guān)心。

【第12篇】定義與命題的數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)

關(guān)于定義與命題的數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)

定義與命題:

1.對(duì)名稱與術(shù)語(yǔ)的含義加以描述,作出明確的規(guī)定,也就是給出他們的定義。

2.對(duì)事情進(jìn)行推斷的句子叫做命題(分真命題與假命題)。

3.每個(gè)命題是由條件和結(jié)論兩部分組成。

4.要說(shuō)明一個(gè)命題是假命題,通常舉出一個(gè)例子,使之具備命題的.條件,而不具有命題的結(jié)論,這種例子叫做反例。

5.把原命題的結(jié)論作為命題的條件,原命題的條件作為命題的結(jié)論,所組成的命題叫原命題的逆命題。

只要這樣踏踏實(shí)實(shí)完成每天的方案和小目標(biāo),就可以自如地應(yīng)對(duì)新學(xué)習(xí),達(dá)到長(zhǎng)遠(yuǎn)目標(biāo)。

【第13篇】學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)中心對(duì)稱

學(xué)校數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)中心對(duì)稱

學(xué)問(wèn)要點(diǎn):中心對(duì)稱和中心對(duì)稱圖形是兩個(gè)不同而又緊密聯(lián)系的概念。

中心對(duì)稱

中心對(duì)稱圖形

正(2n)邊形(n為大于1的正整數(shù)),線段,矩形,菱形,圓,平行四邊形。

中心對(duì)稱圖形并不只有一個(gè)對(duì)稱點(diǎn),比如直線,再比如正弦曲線。

只是中心對(duì)稱的圖形需要滿意不是軸對(duì)稱圖形。比如平行四邊形。也有許多六邊形、八邊形等等只是中心對(duì)稱而不是軸對(duì)稱圖形。

既不是軸對(duì)稱圖形又不是中心對(duì)稱圖形

等腰三角形,直角梯形等。

一般四邊形有的'是軸對(duì)稱圖形。

中心對(duì)稱的性質(zhì)

①關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。

②關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分。

③關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或者在同始終線上)且相等。

識(shí)別一個(gè)圖形是否是中心對(duì)稱圖形就是看是否存在一點(diǎn),使圖形圍著這個(gè)點(diǎn)旋轉(zhuǎn)180°后能與原圖形重合。

中心對(duì)稱是指兩個(gè)圖形繞某一個(gè)點(diǎn)旋轉(zhuǎn)180°后,能夠完全重合,這兩個(gè)圖形關(guān)于該點(diǎn)對(duì)稱,該點(diǎn)稱為對(duì)稱中心.二者相輔相成,兩圖形成中心對(duì)稱,必有對(duì)稱中點(diǎn),而點(diǎn)只有能使兩個(gè)圖形旋轉(zhuǎn)180°后完全重合才稱為對(duì)稱中點(diǎn)。

學(xué)問(wèn)要領(lǐng)總結(jié):假如把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,這兩個(gè)圖形成中心對(duì)稱。

【第14篇】七班級(jí)上冊(cè)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)

七班級(jí)上冊(cè)數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)

一.正數(shù)和負(fù)數(shù)

⒈正數(shù)和負(fù)數(shù)的概念

負(fù)數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負(fù)數(shù)

留意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時(shí),-a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時(shí),-a是正數(shù);當(dāng)a表示0時(shí),-a仍是0。(假如出推斷題為:帶正號(hào)的數(shù)是正數(shù),帶負(fù)號(hào)的`數(shù)是負(fù)數(shù),這種說(shuō)法是錯(cuò)誤的,例如+a,-a就不能做出簡(jiǎn)潔推斷)

②正數(shù)有時(shí)也可以在前面加“+”,有時(shí)“+”省略不寫。所以省略“+”的正數(shù)的符號(hào)是正號(hào)。

2.具有相反意義的量

若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:

零上8℃表示為:+8℃;零下8℃表示為:-8℃

支出與收入;增加與削減;盈利與虧損;北與南;東與西;漲與跌;增長(zhǎng)與降低等等是相對(duì)相反量,它們計(jì)數(shù):比原先多了的數(shù),增加增長(zhǎng)了的數(shù)一般記為正數(shù);相反,比原先少了的數(shù),削減降低了的數(shù)一般記為負(fù)數(shù)。3.0表示的意義

⑴0表示“沒(méi)有”,如教室里有0個(gè)人,就是說(shuō)教室里沒(méi)有人;

⑵0是正數(shù)和負(fù)數(shù)的分界線,0既不是正數(shù),也不是負(fù)數(shù)。

二.有理數(shù)

1.有理數(shù)的概念

⑴正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))

⑵正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù)

⑶正整數(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。

理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無(wú)限不循環(huán)小數(shù),不能寫成分?jǐn)?shù)形式,不是有理數(shù)。②有限小數(shù)和無(wú)限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。

留意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像-2,-4,-6,-8也是偶數(shù),-1,-3,-5也是奇數(shù)。

2.(1)凡能寫成q(p,q為整數(shù)且p0)形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)p

分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).留意:0即不是正數(shù),也不是負(fù)數(shù);-a不肯定是負(fù)數(shù),+a也不肯定是正數(shù);不是有理數(shù);

【第15篇】人教版高三數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)

導(dǎo)語(yǔ)高中學(xué)習(xí)方法其實(shí)很簡(jiǎn)潔,但是這個(gè)方法要始終保持下去,才能在最終考試時(shí)看到成效,假如對(duì)某一科目感愛(ài)好或者有天賦異稟,那么學(xué)習(xí)成果會(huì)有明顯提高,若是學(xué)習(xí)動(dòng)力比較足或是受到了一些樂(lè)觀的影響或刺激,分?jǐn)?shù)也會(huì)大幅度上漲。高三頻道為你預(yù)備了《人教版高三數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)》,盼望助你一臂之力!

人教版高三數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)(一)

隨機(jī)抽樣

簡(jiǎn)介

(抽簽法、隨機(jī)樣數(shù)表法)經(jīng)常用于總體個(gè)數(shù)較少時(shí),它的主要特征是從總體中逐個(gè)抽取;

優(yōu)點(diǎn):操作簡(jiǎn)便易行

缺點(diǎn):總體過(guò)大不易實(shí)行

方法

(1)抽簽法

一般地,抽簽法就是把總體中的n個(gè)個(gè)體編號(hào),把號(hào)碼寫在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌勻稱后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本。

(抽簽法簡(jiǎn)潔易行,適用于總體中的個(gè)數(shù)不多時(shí)。當(dāng)總體中的個(gè)體數(shù)較多時(shí),將總體“攪拌勻稱”就比較困難,用抽簽法產(chǎn)生的樣本代表性差的可能性很大)

(2)隨機(jī)數(shù)法

隨機(jī)抽樣中,另一個(gè)常常被采納的方法是隨機(jī)數(shù)法,即利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣。

分層抽樣

簡(jiǎn)介

分層抽樣主要特征分層按比例抽樣,主要使用于總體中的個(gè)體有明顯差異。共同點(diǎn):每個(gè)個(gè)體被抽到的概率都相等n/m。

定義

一般地,在抽樣時(shí),將總體分成互不交叉的層,然后根據(jù)肯定的比例,從各層獨(dú)立地抽取肯定數(shù)量的個(gè)體,將各層取出的個(gè)體合在一起作為樣本,這種抽樣方法是一種分層抽樣。

整群抽樣

定義

什么是整群抽樣

整群抽樣又稱聚類抽樣。是將總體中各單位歸并成若干個(gè)互不交叉、互不重復(fù)的集合,稱之為群;然后以群為抽樣單位抽取樣本的一種抽樣方式。

應(yīng)用整群抽樣時(shí),要求各群有較好的代表性,即群內(nèi)各單位的差異要大,群間差異要小。

優(yōu)缺點(diǎn)

整群抽樣的優(yōu)點(diǎn)是實(shí)施便利、節(jié)約經(jīng)費(fèi);

整群抽樣的缺點(diǎn)是往往由于不同群之間的差異較大,由此而引起的抽樣誤差往往大于簡(jiǎn)潔隨機(jī)抽樣。

實(shí)施步驟

先將總體分為i個(gè)群,然后從i個(gè)群鐘隨即抽取若干個(gè)群,對(duì)這些群內(nèi)全部個(gè)體或單元均進(jìn)行調(diào)查。抽樣過(guò)程可分為以下幾個(gè)步驟:

一、確定分群的標(biāo)注

二、總體(n)分成若干個(gè)互不重疊的部分,每個(gè)部分為一群。

三、據(jù)各樣本量,確定應(yīng)當(dāng)抽取的群數(shù)。

四、采納簡(jiǎn)潔隨機(jī)抽樣或系統(tǒng)抽樣方法,從i群中抽取確定的群數(shù)。

例如,調(diào)查中同學(xué)患近視眼的狀況,抽某一個(gè)班做統(tǒng)計(jì);進(jìn)行產(chǎn)品檢驗(yàn);每隔8h抽1h生產(chǎn)的全部產(chǎn)品進(jìn)行檢驗(yàn)等。

與分層抽樣的區(qū)分

整群抽樣與分層抽樣在形式上有相像之處,但實(shí)際上差別很大。

分層抽樣要求各層之間的差異很大,層內(nèi)個(gè)體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內(nèi)個(gè)體或單元差異大;

分層抽樣的樣本是從每個(gè)層內(nèi)抽取若干單元或個(gè)體構(gòu)成,而整群抽樣則是要么整群抽取,要么整群不被抽取。

系統(tǒng)抽樣

定義

當(dāng)總體中的個(gè)體數(shù)較多時(shí),采納簡(jiǎn)潔隨機(jī)抽樣顯得較為費(fèi)事。這時(shí),可將總體分成均衡的幾個(gè)部分,然后根據(jù)預(yù)先定出的規(guī)章,從每一部分抽取一個(gè)個(gè)體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣。

步驟

一般地,假設(shè)要從容量為n的總體中抽取容量為n的樣本,我們可以按下列步驟進(jìn)行系統(tǒng)抽樣:

(1)先將總體的n個(gè)個(gè)體編號(hào)。有時(shí)可直接利用個(gè)體自身所帶的號(hào)碼,如學(xué)號(hào)、準(zhǔn)考證號(hào)、門牌號(hào)等;

(2)確定分段間隔k,對(duì)編號(hào)進(jìn)行分段。當(dāng)n/n(n是樣本容量)是整數(shù)時(shí),取k=n/n;

(3)在第一段用簡(jiǎn)潔隨機(jī)抽樣確定第一個(gè)個(gè)體編號(hào)l(l≤k);

(4)根據(jù)肯定的規(guī)章抽取樣本。通常是將l加上間隔k得到第2個(gè)個(gè)體編號(hào)(l+k),再加k得到第3個(gè)個(gè)體編號(hào)(l+2k),依次進(jìn)行下去,直到獵取整個(gè)樣本。

人教版高三數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)(二)

1.定義:

用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。

2.性質(zhì):

①不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)方向不變。

②不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。

③不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。

3.分類:

①一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。

②一元一次不等式組:

a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。

4.考點(diǎn):

①解一元一次不等式(組)

②依據(jù)詳細(xì)問(wèn)題中的數(shù)量關(guān)系列不等式(組)并解決簡(jiǎn)潔實(shí)際問(wèn)題

③用數(shù)軸表示一元一次不等式(組)的解集

【第16篇】初三班級(jí)上冊(cè)數(shù)學(xué)學(xué)問(wèn)點(diǎn)歸納總結(jié)

第一章實(shí)數(shù)

一、重要概念1.數(shù)的分類及概念數(shù)系表:

說(shuō)明:'分類'的原則:1)相稱(不重、不漏)2)有標(biāo)準(zhǔn)

2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)

性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。

3.倒數(shù):①定義及表示法

②性質(zhì):a.a≠1/a(a≠±1);b.1/a中,a≠0;c.01;a>1時(shí),1/a0時(shí),>0;②a0(n是偶數(shù)),0)(正用、逆用)

10.根式運(yùn)算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:a.;b.;c..

11.科學(xué)記數(shù)法:(1≤ab、a

2.一元一次不等式:ax>b、ax

3.一元一次不等式組:

4.不等式的性質(zhì):⑴a>b←→a+c>b+c

⑵a>b←→ac>bc(c>0)

⑶a>b←→ac

⑷(傳遞性)a>b,b>c→a>c

⑸a>b,c>d→a+c>b+d.

5.一元一次不等式的解、解一元一次不等式

6.一元一次不等式組的解、解一元一次不等式組(在數(shù)軸上表示解集)

7.應(yīng)用舉例(略)

第七章相像形

★重點(diǎn)★相像三角形的判定和性質(zhì)

☆內(nèi)容提要☆

一、本章的兩套定理

第一套(比例的有關(guān)性質(zhì)):

涉及概念:①第四比例項(xiàng)②比例中項(xiàng)③比的前項(xiàng)、后項(xiàng),比的內(nèi)項(xiàng)、外項(xiàng)④黃金分割等。

其次套:

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論