2023年湖南省沅江三中數(shù)學(xué)高一第二學(xué)期期末檢測模擬試題含解析_第1頁
2023年湖南省沅江三中數(shù)學(xué)高一第二學(xué)期期末檢測模擬試題含解析_第2頁
2023年湖南省沅江三中數(shù)學(xué)高一第二學(xué)期期末檢測模擬試題含解析_第3頁
2023年湖南省沅江三中數(shù)學(xué)高一第二學(xué)期期末檢測模擬試題含解析_第4頁
2023年湖南省沅江三中數(shù)學(xué)高一第二學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若a<b,則下列不等式中正確的是()A.a(chǎn)2<b2 B. C.a(chǎn)2+b2>2ab D.a(chǎn)c2<bc22.在中,,,則()A. B. C. D.3.兩數(shù)與的等比中項是()A.1 B.-1 C.±1 D.4.已知數(shù)列的前項和,則的值為()A.-199 B.199 C.-101 D.1015.下列函數(shù)中,最小值為2的函數(shù)是()A. B.C. D.6.關(guān)于的方程在內(nèi)有相異兩實根,則實數(shù)的取值范圍為()A. B. C. D.7.直線上的點到圓上點的最近距離為()A. B. C. D.18.己知弧長的弧所對的圓心角為弧度,則這條弧所在的圓的半徑為()A. B. C. D.9.等差數(shù)列中,已知,且公差,則其前項和取最小值時的的值為()A.6 B.7 C.8 D.910.已知向量,,,則與的夾角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等邊三角形的邊長為2,點P在邊上,點Q在邊的延長線上,若,則的最小值為______.12.已知數(shù)列是等差數(shù)列,若,,則________.13.已知向量,則___________.14.空間一點到坐標(biāo)原點的距離是_______.15.在我國古代數(shù)學(xué)著作《孫子算經(jīng)》中,卷下第二十六題是:今有物,不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?滿足題意的答案可以用數(shù)列表示,該數(shù)列的通項公式可以表示為________16.在Rt△ABC中,∠B=90°,BC=6,AB=8,點M為△ABC內(nèi)切圓的圓心,過點M作動直線l與線段AB,AC都相交,將△ABC沿動直線l翻折,使翻折后的點A在平面BCM上的射影P落在直線BC上,點A在直線l上的射影為Q,則的最小值為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,(Ⅰ)求;(Ⅱ)若,,求的值18.如圖,在四棱錐中,底面為平行四邊形,點為中點,且.(1)證明:平面;(2)證明:平面平面.19.如圖,等邊所在的平面與菱形所在的平面垂直,分別是的中點.(1)求證:平面;(2)若,,求三棱錐的體積20.在中,內(nèi)角所對的邊分別為.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.21.已知向量,.(1)若,在集合中取值,求滿足的概率;(2)若,在區(qū)間內(nèi)取值,求滿足的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

利用特殊值對錯誤選項進行排除,然后證明正確的不等式.【詳解】取代入驗證可知,A、D選項錯誤;取代入驗證可知,B選項錯誤.對于C選項,由于,所以,即成立.故選:C【點睛】本小題主要考查不等式的性質(zhì),屬于基礎(chǔ)題.2、A【解析】

本題首先可根據(jù)計算出的值,然后根據(jù)正弦定理以及即可計算出的值,最后得出結(jié)果?!驹斀狻恳驗?,所以.由正弦定理可知,即,解得,故選A。【點睛】本題考查根據(jù)解三角形的相關(guān)公式計算的值,考查同角三角函數(shù)的相關(guān)公式,考查正弦定理的使用,是簡單題。3、C【解析】試題分析:設(shè)兩數(shù)的等比中項為,等比中項為-1或1考點:等比中項4、D【解析】

由特點可采用并項求和的方式求得.【詳解】本題正確選項:【點睛】本題考查并項求和法求解數(shù)列的前項和,屬于基礎(chǔ)題.5、C【解析】

利用基本不等式及函數(shù)的單調(diào)性即可判斷.【詳解】解:對于.時,,故錯誤.對于.,可得,,當(dāng)且僅當(dāng),即時取等號,故最小值不可能為1,故錯誤.對于,可得,,當(dāng)且僅當(dāng)時取等號,最小值為1.對于.,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,,故不對;故選:.【點睛】本題考查基本不等式,難點在于應(yīng)用基本不等式時對“一正二定三等”條件的理解與靈活應(yīng)用,屬于中檔題.6、C【解析】

將問題轉(zhuǎn)化為與有兩個不同的交點;根據(jù)可得,對照的圖象可構(gòu)造出不等式求得結(jié)果.【詳解】方程有兩個相異實根等價于與有兩個不同的交點當(dāng)時,由圖象可知:,解得:本題正確選項:【點睛】本題考查正弦型函數(shù)的圖象應(yīng)用,主要是根據(jù)方程根的個數(shù)確定參數(shù)范圍,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為交點個數(shù)問題,利用數(shù)形結(jié)合來進行求解.7、C【解析】

求出圓心和半徑,求圓心到直線的距離,此距離減去半徑即得所求的結(jié)果.【詳解】將圓化為標(biāo)準(zhǔn)形式可得可得圓心為,半徑,而圓心到直線距離為,

因此圓上點到直線的最短距離為,故選:C.【點睛】本題考查直線和圓的位置關(guān)系,點到直線的距離公式的應(yīng)用,求圓心到直線的距離是解題的關(guān)鍵,屬于中檔題.8、D【解析】

利用弧長公式列出方程直接求解,即可得到答案.【詳解】由題意,弧長的弧所對的圓心角為2弧度,則,解得,故選D.【點睛】本題主要考查了圓的半徑的求法,考查弧長公式等基礎(chǔ)知識,考查了推理能力與計算能力,是基礎(chǔ)題.9、C【解析】因為等差數(shù)列中,,所以,有,所以當(dāng)時前項和取最小值.故選C.10、D【解析】

直接利用向量的數(shù)量積轉(zhuǎn)化求解向量的夾角即可.【詳解】因為,所以與的夾角為.故選:D.【點睛】本題主要考查向量的夾角的運算,以及運用向量的數(shù)量積運算和向量的模.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

以為軸建立平面直角坐標(biāo)系,設(shè),用t表示,求其最小值即可得到本題答案.【詳解】過點A作BC的垂線,垂足為O,以為軸建立平面直角坐標(biāo)系.作PM垂直BC交于點M,QH垂直y軸交于點H,CN垂直HQ交于點N.設(shè),則,故有所以,,當(dāng)時,取最小值.故答案為:【點睛】本題主要考查利用建立平面直角坐標(biāo)系解決向量的取值范圍問題.12、【解析】

求出公差,利用通項公式即可求解.【詳解】設(shè)公差為,則所以故答案為:【點睛】本題主要考查了等差數(shù)列基本量的計算,屬于基礎(chǔ)題.13、【解析】

根據(jù)向量夾角公式可求出結(jié)果.【詳解】.【點睛】本題考查了向量夾角的運算,牢記平面向量的夾角公式是破解問題的關(guān)鍵.14、【解析】

直接運用空間兩點間距離公式求解即可.【詳解】由空間兩點距離公式可得:.【點睛】本題考查了空間兩點間距離公式,考查了數(shù)學(xué)運算能力.15、【解析】

根據(jù)題意結(jié)合整除中的余數(shù)問題、最小公倍數(shù)問題,進行分析求解即可.【詳解】由題意得:一個數(shù)用3除余2,用7除也余2,所以用3與7的最小公倍數(shù)21除也余2,而用21除余2的數(shù)我們首先就會想到23;23恰好被5除余3,即最小的一個數(shù)為23,同時這個數(shù)相差又是3,5,7的最小公倍數(shù),即,即數(shù)列的通項公式可以表示為,故答案為:.【點睛】本題以數(shù)學(xué)文化為背景,利用數(shù)列中的整除、最小公倍數(shù)進行求解,考查邏輯推理能力和運算求解能力.16、825【解析】

以AB,BC所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,設(shè)直線l的斜率為k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【詳解】過點M作△ABC的三邊的垂線,設(shè)⊙M的半徑為r,則r2,以AB,BC所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,如圖所示,則M(2,2),A(0,8),因為A在平面BCM的射影在直線BC上,所以直線l必存在斜率,過A作AQ⊥l,垂足為Q,交直線BC于P,設(shè)直線l的方程為:y=k(x﹣2)+2,則|AQ|,又直線AQ的方程為:yx+8,則P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①當(dāng)k>﹣3時,4(k+3)25≥825,當(dāng)且僅當(dāng)4(k+3),即k3時取等號;②當(dāng)k<﹣3時,則4(k+3)23≥823,當(dāng)且僅當(dāng)﹣4(k+3),即k3時取等號.故答案為:825【點睛】本題考查了考查空間距離的計算,考查基本不等式的運算,意在考查學(xué)生對這些知識的理解掌握水平.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由正弦定理、二倍角公式,結(jié)合可將已知邊角關(guān)系式化簡為,從而求得,根據(jù)可求得;(Ⅱ)由三角形面積公式可求得;利用余弦定理可構(gòu)造方程求得結(jié)果.【詳解】(Ⅰ)由正弦定理得:,即(Ⅱ)由得:由余弦定理得:【點睛】本題考查解三角形的相關(guān)知識,涉及到正弦定理化簡邊角關(guān)系式、余弦定理和三角形面積公式的應(yīng)用,屬于??碱}型.18、(1)證明見解析;(2)證明見解析【解析】

(1)連接交于點,連接,可證,從而可證平面.(2)可證平面,從而得到平面平面.【詳解】(1)連接交于點,連接,因為底面為平行四邊形,所以為中點.在中,又為中點,所以.又平面,平面,所以平面.(2)因為底面為平行四邊形,所以.又即,所以.又即.又平面,平面,,所以平面.又平面,所以平面平面.【點睛】線面平行的證明的關(guān)鍵是在面中找到一條與已知直線平行的直線,找線的方法是平行投影或中心投影,我們也可以通過面面平行證線面平行,這個方法的關(guān)鍵是構(gòu)造過已知直線的平面,證明該平面與已知平面平行.線面垂直的判定可由線線垂直得到,注意線線是相交的,也可由面面垂直得到,注意線在面內(nèi)且線垂直于兩個平面的交線.而面面垂直的證明可以通過線面垂直得到,也可以通過證明二面角是直二面角.19、(1)證明見解析;(2).【解析】

解法一:(1)取中點,連接,,證出,利用線面平行的判定定理即可證出.(2)取中點,連接,利用面面垂直的性質(zhì)定理可得平面,過作于,可得平面,由即可求解.解法二:(1)取中點,連接,證出平面,平面,利用面面平行的判定定理可證出平面平面,再利用面面平行的性質(zhì)定理即可證出.(2)取中點,連接,根據(jù)面面垂直的性質(zhì)定理可得平面,再由,利用三棱錐的體積公式即可求解.【詳解】解法一:(1)取中點,連接,.因為分別是的中點,所以,且,所以四邊形為平行四邊形,所以,因為平面,平面,所以平面.(2)取中點,連接,則,且,因為平面平面,平面平面,平面,所以平面同理,在平面內(nèi),過作于,則平面,且,因為為的中點,所以,所以,.解法二:(1)取中點,連接,因為為的中點,所以,因為平面,平面,所以平面.因為,且,所以四邊形為平行四邊形,故,因為平面,平面,所以平面,因為,平面,所以平面平面,因為平面,所以平面.(2)取中點,連接,依題意,為等邊三角形,所以,且.因為平面平面,平面平面,平面,所以平面.因為是的中點,所以,所以.【點睛】本小題主要考查幾何體的體積及、直線與直線、直線與平面、平面與平面的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力、推理論證能力、運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想等.20、(Ⅰ).=.(Ⅱ).【解析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進而得到,由轉(zhuǎn)化為,求出,進而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結(jié)果.試題解析:(Ⅰ)解:在中,因為,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值為,的值為.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考點:正弦定理、余弦定理、解三角形【名師點睛】利用正弦定理進行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點,經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.21、(1)(2)【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論