版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
量子力學(xué)第四章1第一頁,共六十八頁,2022年,8月28日第四章態(tài)和力學(xué)量的表象§4.1態(tài)的表示
§4.2
算符的矩陣表示
§4.3
矩陣性質(zhì)§4.4量子力學(xué)公式的矩陣表示§4.5幺正變換(表象變換)
§4.6態(tài)隨時間變化的幺正變換§4.7海森伯繪景與薛定諤繪景
§4.8狄拉克符號
§4.9線性諧振子與占有數(shù)表象
RETURN2第二頁,共六十八頁,2022年,8月28日第四章態(tài)和力學(xué)量的表象表象:態(tài)和力學(xué)量的具體表示方式稱為表象
§4.1態(tài)的表示
量子力學(xué)中,任何一個量子態(tài)
可以看成抽象的線性空間中的一個“矢量”,體系的任一組力學(xué)量完全集的共同本征函數(shù)(記為,n代表一組量子數(shù))可以構(gòu)成此態(tài)空間的一組正交歸一完備的基矢。nu3第三頁,共六十八頁,2022年,8月28日任何一個態(tài)(可知量)可按該基矢展開展開系數(shù)其中是矢量
在基上的投影,這一組數(shù)就是矢量在Q表象中的表示,記為一矩陣形式nuyna共軛矩陣為4第四頁,共六十八頁,2022年,8月28日討論:
①態(tài)矢量一般為復(fù)量,空間維數(shù)可以是無限維的,不可數(shù)的,這種函數(shù)空間稱希爾伯特空間。②若是歸一化的,則即5第五頁,共六十八頁,2022年,8月28日③同一個態(tài)可以在不同的表象中表示,表象不同,波函數(shù)的形式也不同,但它們完全等價。
坐標(biāo)表象:
動量表象:RETURN6第六頁,共六十八頁,2022年,8月28日§
4.2
算符的矩陣表示
一、算符在一般表象中的表示二、算符在自身表象中的表示
三.算符表示矩陣的性質(zhì)RETURN7第七頁,共六十八頁,2022年,8月28日§4.2
算符的矩陣表示
一、算符在一般表象中的表示設(shè)算符作用于函數(shù)后,得出另一函數(shù).在坐標(biāo)表象中:Q表象中:設(shè)Q有分立譜相應(yīng)的本征函數(shù)則8第八頁,共六十八頁,2022年,8月28日用同乘上式兩邊,再對x積分是在Q表象中的表示
是在Q表象中的表示
故其中9第九頁,共六十八頁,2022年,8月28日即:算符在Q表象中的表示是一矩陣。矩陣元表示Q表象中基矢在算符作用下的變化性質(zhì)。RETURN所以矩陣給定后,基矢在作用下的變化就完全確定,同時任何一個量子態(tài)在作用下的變化也就完全確定了。10第十頁,共六十八頁,2022年,8月28日二、算符在自身表象中的表示
Q在自身表象中的矩陣元:算符在其自身表象中是一個對角矩陣。RETURN11第十一頁,共六十八頁,2022年,8月28日三.算符表示矩陣的性質(zhì)因為是厄米算符,則有F^
F矩陣的第m列第n行的矩陣元等于它第n列第m行矩陣元的共軛復(fù)數(shù),稱為厄米矩陣。F的共軛矩陣滿足結(jié)論:表示厄米算符的矩陣是厄米矩陣。12第十二頁,共六十八頁,2022年,8月28日[例題]求一維諧振子的坐標(biāo)x,動量p及哈密頓量H在能量表象中的矩陣表示。
[解]利用厄米多項式的遞推關(guān)系在能量表象中x的矩陣表示為13第十三頁,共六十八頁,2022年,8月28日在能量表象中p的矩陣表示為:14第十四頁,共六十八頁,2022年,8月28日能量H在自身表象中的矩陣RETURN15第十五頁,共六十八頁,2022年,8月28日§4.3
矩陣性質(zhì)
矩陣——表象理論的數(shù)學(xué)基礎(chǔ)1.矩陣的加法
若矩陣A和B的行數(shù)與列數(shù)分別相同,則它們可以相加成另一矩陣C,其中C的元素為A和B相對應(yīng)元素之和:量子力學(xué)中,算符的表示矩陣滿足上述加法規(guī)則.16第十六頁,共六十八頁,2022年,8月28日設(shè)算符是算符與之和,則在任一表象中的矩陣元F^G^17第十七頁,共六十八頁,2022年,8月28日2.矩陣的乘法
兩矩陣乘法規(guī)則:若C=AB,則C的矩陣元條件:矩陣A的列數(shù)等于B的行數(shù)量子力學(xué)中表示算符的矩陣滿足上述規(guī)則設(shè),則在Q表象中的矩陣元:18第十八頁,共六十八頁,2022年,8月28日令其中所以注:
(1)一般AB≠BA,或(2)若AB=BA,則稱矩陣A與B對易19第十九頁,共六十八頁,2022年,8月28日3.兩矩陣A與B乘積的轉(zhuǎn)置矩陣等于B的轉(zhuǎn)置矩陣乘以A的轉(zhuǎn)置矩陣,即推之:
RETURN故有
20第二十頁,共六十八頁,2022年,8月28日§4.4量子力學(xué)公式的矩陣表示
一、期望值公式
二、本征值方程三、薛定諤方程
RETURN21第二十一頁,共六十八頁,2022年,8月28日§
4.4
量子力學(xué)公式的矩陣表示
一、期望值公式
Q表象中:22第二十二頁,共六十八頁,2022年,8月28日即特例:力學(xué)量在自身表象中的期望值
或代表在態(tài)下測量力學(xué)量F得本征值的概率。RETURN因為所以23第二十三頁,共六十八頁,2022年,8月28日二、本征值方程上式表示一個線性齊次方程組即24第二十四頁,共六十八頁,2022年,8月28日方程組有非零解的條件是系數(shù)行列式等于零:——久期方程F的本征值:對于每一個本征值可求出相應(yīng)的本征矢RETURN25第二十五頁,共六十八頁,2022年,8月28日三、薛定諤方程
Q表象中
左乘再對x積分所以其中:26第二十六頁,共六十八頁,2022年,8月28日矩陣表示:簡記:RETURN27第二十七頁,共六十八頁,2022年,8月28日§4.5幺正變換(表象變換)
一、表象變換二、表象變換矩陣S的性質(zhì)
RETURN28第二十八頁,共六十八頁,2022年,8月28日§4.5
幺正變換(表象變換)
一、表象變換
A表象→
B表象
基矢:態(tài)矢量:力學(xué)量:29第二十九頁,共六十八頁,2022年,8月28日(1)態(tài)矢量從A表象到B表象的變換
A表象→
B表象即或故30第三十頁,共六十八頁,2022年,8月28日(2)力學(xué)量從A表象到B表象的變換
即所以RETURN31第三十一頁,共六十八頁,2022年,8月28日二、表象變換矩陣S的性質(zhì)
1.變換矩陣S是么正矩陣
S為幺正矩陣即32第三十二頁,共六十八頁,2022年,8月28日2.幺正變換不改變算符的本征值因在A表象中在B表象中所以即:在B表象中力學(xué)量的本征值仍為
3.幺正變換S不改變矩陣的跡即:F的跡等于F′的跡。RETURN33第三十三頁,共六十八頁,2022年,8月28日§4.6態(tài)隨時間變化的幺正變換一、變換矩陣
二、變換矩陣為幺正矩陣
RETURN34第三十四頁,共六十八頁,2022年,8月28日§4.6態(tài)隨時間變化的幺正變換一、變換矩陣
設(shè)不是t的顯函數(shù),則上述方程的解取為:H^設(shè)則因是任意波函數(shù),得算符滿足的方程y或RETURN35第三十五頁,共六十八頁,2022年,8月28日二、變換矩陣為幺正矩陣
同理有:故是幺正算符,相應(yīng)的變換為幺正變換U(t)^又因RETURN因為所以36第三十六頁,共六十八頁,2022年,8月28日§4.7海森伯繪景與薛定諤繪景
一、海森伯繪景與薛定諤繪景
二、兩種繪景間的關(guān)系
三、海森伯運動方程RETURN37第三十七頁,共六十八頁,2022年,8月28日§
4.7海森伯繪景與薛定諤繪景
一、海森伯繪景與薛定諤繪景
薛定諤繪景海森伯繪景
波函數(shù)隨時間變化波函數(shù)不隨時間變化力學(xué)量不隨時間變化力學(xué)量隨時間變化
RETURN38第三十八頁,共六十八頁,2022年,8月28日二、兩種繪景間的關(guān)系
1.態(tài)矢量:或2.力學(xué)量的期望值(滿足期望值不因表象的不同而不同的要求)由于故39第三十九頁,共六十八頁,2022年,8月28日3.力學(xué)量算符
哈密頓算符:RETURN40第四十頁,共六十八頁,2022年,8月28日三、海森伯運動方程由對時間求導(dǎo)海森伯
WernerHeisenberg
(1901-1976)
因創(chuàng)建量子力學(xué)矩陣理論榮獲1932年諾貝爾物理學(xué)獎RETURN41第四十一頁,共六十八頁,2022年,8月28日§4.8狄拉克符號
一、狄拉克符號規(guī)定
二、量子力學(xué)理論在具體表象中的表示三、表象變換
狄拉克Dirac
Paul(1902-1984)因創(chuàng)建發(fā)現(xiàn)原子理論新的有效形式與薛定諤榮獲1933年諾貝爾物理學(xué)獎RETURN42第四十二頁,共六十八頁,2022年,8月28日§4.8狄拉克符號
采用狄拉克符號表述量子力學(xué)理論有兩個優(yōu)點:(1)運算簡潔(2)可毋需具體表象討論問題。一、狄拉克符號規(guī)定
1.右矢(刃矢ket)與左矢(刁矢bra)①量子態(tài)→態(tài)矢量→右矢具體的態(tài)矢量:——波函數(shù)描述的狀態(tài)——能量的本征態(tài)(本征值為En)——坐標(biāo)的本征態(tài)(本征值為x′)43第四十三頁,共六十八頁,2022年,8月28日②量子態(tài)→態(tài)矢量→左矢具體的態(tài)矢量:③左矢與右矢的關(guān)系是的共軛矢量,即它們在同一表象中的相應(yīng)分量互為共軛復(fù)數(shù)2.左矢與右矢的標(biāo)積①定義:是的共軛矢量,即是的共軛矢量,即或44第四十四頁,共六十八頁,2022年,8月28日③正交歸一化條件設(shè)力學(xué)量完全集的本征值為Fn,相應(yīng)的本征態(tài)為,滿足正交歸一條件:F^分立譜或連續(xù)譜如:坐標(biāo)的本征矢動量的本征矢RETURN②45第四十五頁,共六十八頁,2022年,8月28日二、量子力學(xué)理論在具體表象中的表示1.態(tài)矢量的表示取Q表象:(1)Q的本征值為分立譜:基矢或?qū)θ我鈶B(tài)矢量②投影算符:令
注:①為態(tài)矢量在Q表象中的表示,稱其為態(tài)矢在基矢上的投影,又稱為態(tài)矢在Q表象中的波函數(shù)。46第四十六頁,共六十八頁,2022年,8月28日作用矢量后得到其在基矢上的投影,故稱為投影算符。③本征矢的封閉性:(2)Q的本征值為連續(xù)譜:基或組成完全系注:①②本征矢的封閉性47第四十七頁,共六十八頁,2022年,8月28日如:x表象:基則為態(tài)矢量在x表象中投影。2.力學(xué)量算符的表示(1)算符F^設(shè)取Q表象:
①設(shè)Q具有分立本征譜,則基矢或48第四十八頁,共六十八頁,2022年,8月28日以左乘上式,再利用即是算符在Q表象中的表示矩陣元F^分別代表態(tài)矢和在Q表象中的表示。49第四十九頁,共六十八頁,2022年,8月28日②設(shè)Q具有連續(xù)本征值譜,基矢力學(xué)量的矩陣元:F^如:x表象:(2)的共軛算符F^當(dāng)是厄米算符時:F^設(shè)則50第五十頁,共六十八頁,2022年,8月28日3.量子力學(xué)公式的表示
(1)薛定諤方程:取Q表象:設(shè)基矢為以左乘上式,得51第五十一頁,共六十八頁,2022年,8月28日取x表象:設(shè)基矢為以左乘上式,對空間積分所以52第五十二頁,共六十八頁,2022年,8月28日(2)本征值方程取Q表象:設(shè)基矢為即53第五十三頁,共六十八頁,2022年,8月28日(3)平均值公式如:x表象:在態(tài)下,力學(xué)量的平均值:F^取Q表象:設(shè)基矢為RETURN54第五十四頁,共六十八頁,2022年,8月28日三、表象變換
設(shè)A表象:基矢為,任一量子態(tài)B表象:基矢為,同一量子態(tài)A表象→B表象量子態(tài)故因為55第五十五頁,共六十八頁,2022年,8月28日力學(xué)量F^即因為RETURN56第五十六頁,共六十八頁,2022年,8月28日§4.9線性諧振子與占有數(shù)表象
一、湮沒算符和產(chǎn)生算符二、線性諧振子
三、占有數(shù)表象
RETURN57第五十七頁,共六十八頁,2022年,8月28日§4.9線性諧振子與占有數(shù)表象
一、湮沒算符和產(chǎn)生算符1.定義2.性質(zhì)
(1)不是厄米算符(2)(3)58第五十八頁,共六十八頁,2022年,8月28日3.,的物理含義由諧振子能量公式n份能量,每份可看作一個粒子,稱為準(zhǔn)粒子,表示體系含有n個粒子根據(jù):即粒子數(shù)由n→n-1,減少一個,湮沒算符即粒子數(shù)由n→n+1,增加一個,產(chǎn)生算符RETURN59第五十九頁,共六十八頁,2022年,8月28日二、線性諧振子
線性諧振子哈密頓量由得60第六十頁,共六十八頁,2022年,8月28日其中:——粒子數(shù)算符,本征值為粒子數(shù)n1.的本征矢
基態(tài):即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF(陜) 053-2021 浮游菌采樣器校準(zhǔn)規(guī)范
- 塑料運輸合同三篇
- 行業(yè)前景對管理策略的影響計劃
- 某市商業(yè)中心裝修招標(biāo)合同三篇
- 幼兒園小班大自然觀察與學(xué)習(xí)計劃
- 其它新型計算機外圍設(shè)備相關(guān)行業(yè)投資規(guī)劃報告范本
- 新型船用氣象儀器行業(yè)相關(guān)投資計劃提議范本
- 職業(yè)健康安全在生產(chǎn)計劃中的考量
- 《信用衍生品定價》課件
- 煤礦培訓(xùn)課件:井下電氣設(shè)備保護接地裝置技術(shù)標(biāo)準(zhǔn)
- 數(shù)字化推動下的小學(xué)語文智慧課堂教學(xué)策略
- 異物取出術(shù)知情同意書
- 中國風(fēng)水墨花景演講PPT模板
- 醫(yī)院職工停薪留職申請書2篇
- 腳手架搭設(shè)與使用風(fēng)險分析及管控措施
- 經(jīng)纖維支氣管鏡氣管插管
- 初中英語常考改錯練習(xí)題(共十八類100題附參考答案-解析)
- 爐膛熱力計算
- 深圳高鐵總部項目遴選方案
- AQ-C1-19 安全教育記錄表(三級)
- 五年級閱讀指導(dǎo)課(課堂PPT)
評論
0/150
提交評論