(新課標(biāo))高考數(shù)學(xué)第三章三角函數(shù)解三角形37正弦定理和余弦定理課時(shí)規(guī)范練文(含解析)新人教A版_第1頁(yè)
(新課標(biāo))高考數(shù)學(xué)第三章三角函數(shù)解三角形37正弦定理和余弦定理課時(shí)規(guī)范練文(含解析)新人教A版_第2頁(yè)
(新課標(biāo))高考數(shù)學(xué)第三章三角函數(shù)解三角形37正弦定理和余弦定理課時(shí)規(guī)范練文(含解析)新人教A版_第3頁(yè)
(新課標(biāo))高考數(shù)學(xué)第三章三角函數(shù)解三角形37正弦定理和余弦定理課時(shí)規(guī)范練文(含解析)新人教A版_第4頁(yè)
(新課標(biāo))高考數(shù)學(xué)第三章三角函數(shù)解三角形37正弦定理和余弦定理課時(shí)規(guī)范練文(含解析)新人教A版_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

3-7正弦定理和余弦定理課時(shí)規(guī)范練A組基礎(chǔ)對(duì)點(diǎn)練1.(2016·高考全國(guó)卷Ⅰ)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知a=5,c=2,2cosA=3,則b=(D)A.2B.3C.2D.32.已知銳角△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,23cos2A+cos2A=0,a=7,c=6,則b=(D)A.10B.9C.8D.513.鈍角三角形ABC的面積是2,AB=1,BC=2,則AC=(B)A.5B.5C.2D.11分析:∵鈍角三角形ABC的面積是2,AB=c=1,BC=a=2,112∴S=2acsinB=2,即sinB=2,當(dāng)B為鈍角時(shí),cos=-1-sin2=-2,BB2利用余弦定理得2=2+2-2··cos=1+2+2=5,即=5,ACABBCABBCBAC22當(dāng)B為銳角時(shí),cosB=1-sinB=2,利用余弦定理得222B=1+2-2=1,即AC=1,AC=AB+BC-2AB·BC·cos222此時(shí)AB+AC=BC,即△ABC為直角三角形,不合題意,舍去,則AC=5.應(yīng)選B.4.在△ABC中,角A,B,C的對(duì)邊分別為

a,b,c.若△ABC為銳角三角形,

且知足

sin

B(1+2cos

C)=2sin

Acos

C+cos

Asin

C,則以下等式建立的是

(

A)A.a(chǎn)=2b

B.b=2aC.A=2B

D.B=2A5.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為

a,b,c,且

bsin

A=

3acos

B,則

B=(

C)π

πA.

6

B.

4ππC.3D.26.(2018·衡陽(yáng)聯(lián)考)已知△的三邊長(zhǎng)為三個(gè)連續(xù)的自然數(shù),且最大內(nèi)角是最小內(nèi)角的2ABC倍,則最小內(nèi)角的余弦值是(B)23A.3B.45D.7C.106分析:設(shè)三邊長(zhǎng)挨次是x-1,x,x+1,此中x是自然數(shù),且x≥2,令三角形的最小角為A,則最大角為2A,x-1x+1A=2sinx+1由正弦定理,有sinA=sin2AcosA,∴cosA=x+1,x-由余弦定理,有cosA=x2+x+2-x-2,2xx+x+1x2+x+2-x-2x+1x2+4xx+4∴x-=2xx+,即x-1=x2+x=x+1,整理得(x+1)2=(x-1)(x+4),解得x=5,三邊長(zhǎng)為4,5,6,52+62-423則cosA=2×5×6=4.7.(2018·西安模擬)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若bcosC+ccos=sin,且sin2=sin2,則△的形狀為(D)BaABCABCA.等腰三角形B.銳角三角形C.直角三角形D.等腰直角三角形分析:由于bcos+cos=sin,CcBaA因此由正弦定理得sinBcosC+sinCcosB=sin2A,因此sin(B+C)=sin2A,因此sin=sin2.AA由于0<A<π,因此sinA≠0,因此sinA=1.因此A=π.2由于sin2B=sin2C,因此由正弦定理得b2=c2.由于>0,>0,bc因此b=c.因此△ABC是等腰直角三角形.綜上所述,應(yīng)選D.8.(2016·高考北京卷)在△中,∠=2π,=3c,則b=__1__.c39.在△ABC中,已知sinA∶sinB=2∶1,c2=b2+2bc,則三內(nèi)角A,B,C的度數(shù)挨次是__45°,30°,105°__.10.在△ABC中,A=30°,AB=4,知足此條件的△ABC有兩解,則BC邊長(zhǎng)度的取值范圍為__(2,4)__.分析:由正弦定理可得BC=AB,sinAsinCAB·sinA2∴BC=sinC=sinC,∵△ABC有兩個(gè)解,30°<C<150°,且C≠90°,12<sinC<1,∴=2∈(2,4).BCsinC11.已知△,==4,=2.點(diǎn)D為AB延伸線上一點(diǎn),=2,連結(jié),則△ABCABACBCBDCDBDC的面積是15,cos∠BDC=10.24分析:如圖,取BC中點(diǎn)E,DC中點(diǎn)F,由題意知AE⊥BC,BF⊥CD.在Rt△ABE中,cos∠ABE=BE1=,AB41115∴cos∠DBC=-4,sin∠DBC=1-16=4.115∴S△BCD=2×BD×BC×sin∠DBC=2.21為銳角,∴sin∠10∵cos∠=1-2sin∠=-,且∠=.DBCDBF4DBFDBF410在Rt△BDF中,cos∠BDF=sin∠DBF=4.1510綜上可得,△BCD的面積是2,cos∠BDC=4.12.四邊形ABCD的內(nèi)角A與C互補(bǔ),AB=1,BC=3,CD=DA=2.求C和BD;求四邊形ABCD的面積.分析:(1)由題設(shè)及余弦定理得222BD=BC+CD-2BC·CDcosC=13-12cosC,①222BD=AB+DA-2AB·DAcosA=5+4cosC.②1由①②得cosC=2,故C=60°,BD=7.四邊形ABCD的面積11S=2AB·DAsinA+2BC·CDsinC112×1×2+2×3×2sin60°23.13.△ABC中,D是BC上的點(diǎn),AD均分∠BAC,BD=2DC.sinB(1)求sinC;(2)若∠BAC=60°,求∠B.分析:(1)由正弦定理,得ADBDADDC=,=.sinBsin∠BADsinCsin∠CAD由于AD均分∠BAC,BD=2DC,因此sinBDC1.sin==CBD2由于∠C=180°-(∠BAC+∠B),∠BAC=60°,1因此sinC=sin(∠BAC+∠B)=2cosB+2sinB.3由(1)知2sinB=sinC,因此tanB=3,即∠B=30°.B組能力提高練1.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知8b=5c,C=2B,則cosC=(A)77A.25B.-25724C.±25D.25sinC分析:由C=2B,得sinC=sin2B=2sinBcosB,由正弦定理及8b=5c,得cosB=2sinBc4==,2b52427因此cosC=cos2B=2cosB-1=2×5-1=25.應(yīng)選A.2.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若b2+c2-a2=3bc,且b=3a,則以下關(guān)系必定不建立的是(B)A.a(chǎn)=cB.b=cC.2a=cD.a2+b2=c2分析:由余弦定理,得cosb2+c2-a23bc3=30°.又b=3,由正弦定===,則A2bc2bc2Aa理得sinB=3sinA=3sin30°=3,因此B=60°或120°.當(dāng)B=60°時(shí),△ABC為2直角三角形,且2a=c,可知C,D建立;當(dāng)B=120°時(shí),C=30°,因此A=C,即a=c,可知A建立,應(yīng)選B.3.在△中,角,,的對(duì)邊分別為a,,.若知足c=2,cos=sinA的△ABCABCABCbcaCc有兩個(gè),則邊長(zhǎng)BC的取值范圍是(D)A.(1,2)B.(1,3)C.(3,2)D.(2,2)分析:由于acosC=csinA,由正弦定理得sinAcosC=sinCsinA,易知sinA≠0,故tan=1,因此=π.過點(diǎn)B作邊上的高(圖略),垂足為,則=2,要使?jié)MCC4ACBDDBD2BC2足條件的△ABC有兩個(gè),則BC>2>2BC,解得2<BC<2.應(yīng)選D.4.在△中,已知2cos=,sinsin·(2-cos)=sin2C+1,則△為(D)ABCaBcABC22ABCA.等邊三角形B.鈍角三角形C.銳角非等邊三角形D.等腰直角三角形分析:由2acos2+c2-2B=c?2a·ab=c?a2=b2,2ac因此a=b.由于sinAsinB(2-cosC)=sin2C12+2,因此2sinsin(2-cos)-2+1-2sin2C=0,因此2sinsin(2-cos)-2+cosCABC2ABC=0,因此(2-cosC)(2sinAsinB-1)=0,121π由于cosC≠2,因此sinAsinB=2,由于a=b,因此sinA=2,因此A=B=4,因此Cπ=,因此△ABC是等腰直角三角形,應(yīng)選D.5.已知

a,b,c

分別為△

ABC三個(gè)內(nèi)角

A,B,C的對(duì)邊,

a=2,且(2+b)(sin

A-sin

B)=(c-b)sin

C,則△ABC面積的最大值為

3.分析:由正弦定理得(2+b)(a-b)=(c-b)c,即(a+b)·(a-b)=(c-b)c,即b2+c2-a2b2+c2-a21π222=bc,因此cosA=2bc=2,又A∈(0,π),因此A=3,又b+c-a=bc≥2bc-1134,當(dāng)且僅當(dāng)b=c=2時(shí),等號(hào)建立,即bc≤4,故S△ABC=2bcsinA≤2×4×2=3,則△ABC面積的最大值為3.6.(2017·高考全國(guó)卷Ⅱ)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若2bcosB=acosC+ccosA,則B=π.3分析:由正弦定理可得2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB?cosB=1?=π.2B37.在△ABC中,內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,若bsinA-3acosB=0,且2a+cb=ac,則的值為__2__.分析:由題意及正弦定理得sinBsinA-3sinAcosB=0,由于sinA≠0,因此sinB3cosB=0,因此tanB=3,又0<B<π,因此B=π3.由余弦定理得b2=a2+c2-2accos2222222a+cB=a+c-ac,即b=(a+c)-3ac,又b=ac,因此4b=(a+c),解得b=2.32228.(2018·高考北京卷)若△ABC的面積為4(a+c-b),且∠C為鈍角,則∠B=__60°__;ca的取值范圍是__(2,+∞)__.分析:∵△ABC=3(a2+c2-b2)=1sin,S42acBa2+c2-b2sinB∴2ac=3,sinBsinBπ即cosB=3,∴cosB=3,∠B=3,2π31csinCsin3-A2cosA--2·sinA311則=sin=sinA==·tan+,aAsinA2A2∴∠C為鈍角,∠=π,∴0<∠<π,B3A631A∈(3,+∞),∴tanA∈0,3,tanc故a∈(2,+∞).9.在△中,內(nèi)角,,C所對(duì)的邊分別為a,,,已知cos2+cos=1-coscos.ABCABbcBBAC求證:a,b,c成等比數(shù)列;若b=2,求△ABC的面積的最大值.分析:(1)證明:在△ABC中,cosB=-cos(A+C).由已知,得(1-sin2B)-cos(A+C)=1-cosAcosC,∴-sin

2B-(cos

Acos

C-sin

Asin

C)=-cos

Acos

C,化簡(jiǎn),得

sin

2B=sin

Asin

C.由正弦定理,得

b2=ac,∴a,b,c成等比數(shù)列.由(1)及題設(shè)條件,得ac=4.a2+c2-b2a2+c2-ac2ac-ac1則cosB=2ac=≥2ac=,2ac2當(dāng)且僅當(dāng)=c時(shí),等號(hào)建立.a(chǎn)2123∵0<B<π,∴sinB=1-cosB≤1-2=2,113∴S△=2acsinB≤2×4×2ABC即△的面積的最大值為3.ABC10.(2018·??谡{(diào)研)在△中,角,,C的對(duì)邊分別是a,,,已知(-3)cosCABCABbcab=c(3cosB-cosA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論