




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.截一個幾何體,各個截面都是圓面,則這個幾何體一定是()A.圓柱 B.圓錐 C.球 D.圓臺2.已知樣本的平均數(shù)是10,方差是2,則的值為()A.88 B.96 C.108 D.1103.設(shè),,則的值可表示為()A. B. C. D.4.若一個正四棱錐的側(cè)棱和底面邊長相等,則該正四棱錐的側(cè)棱和底面所成的角為()A.30° B.45° C.60° D.90°5.我國古代著名的周髀算經(jīng)中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長一丈三尺五寸,夏至晷長一尺六寸意思是:一年有二十四個節(jié)氣,每相鄰兩個節(jié)氣之間的日影長度差為分;且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分則“立春”時日影長度為A.分 B.分 C.分 D.分6.設(shè)正實數(shù)x,y,z滿足x2-3xy+4y2-z=0,則當(dāng)取得最小值時,x+2y-z的最大值為()A.0 B.C.2 D.7.若集合A=α|α=π6+kπ,k∈ZA.? B.π6 C.-π8.如圖,是的直觀圖,其中軸,軸,那么是()A.等腰三角形 B.鈍角三角形 C.等腰直角三角形 D.直角三角形9.下列各角中,與126°角終邊相同的角是()A. B. C. D.10.已知等差數(shù)列的公差為2,且是與的等比中項,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的通項公式,則____________.12.若三角形ABC的三個角A,B,C成等差數(shù)列,a,b,c分別為角A,B,C的對邊,三角形ABC的面積,則b的最小值是________.13.已知圓的圓心在直線上,半徑為,若圓上存在點,它到定點的距離與到原點的距離之比為,則圓心的縱坐標(biāo)的取值范圍是__________.14._________.15.已知四棱錐的底面是邊長為的正方形,側(cè)棱長均為,若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的側(cè)面積為________.16.若函數(shù)的圖象與直線恰有兩個不同交點,則的取值范圍是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐P‐ABCD中,四邊形ABCD為正方形,PA⊥平面ABCD,E為PD的中點.求證:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.18.中,角A,B,C所對邊分別是a、b、c,且.(1)求的值;(2)若,求面積的最大值.19.如圖,在四棱錐中,,且,,,點在上,且.(1)求證:平面⊥平面;(2)求證:直線∥平面.20.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調(diào)遞增區(qū)間.21.在平面直角坐標(biāo)系中,為坐標(biāo)原點,三點滿足.(1)求證:三點共線;(2)已知的最小值為,求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
試題分析:圓柱截面可能是矩形;圓錐截面可能是三角形;圓臺截面可能是梯形,該幾何體顯然是球,故選C.2、B【解析】
根據(jù)平均數(shù)和方差公式列方程組,得出和的值,再由可求得的值.【詳解】由于樣本的平均數(shù)為,則有,得,由于樣本的方差為,有,得,即,,因此,,故選B.【點睛】本題考查利用平均數(shù)與方差公式求參數(shù),解題的關(guān)鍵在于平均數(shù)與方差公式的應(yīng)用,考查計算能力,屬于中等題.3、A【解析】
由,可得到,然后根據(jù)反余弦函數(shù)的圖象與性質(zhì)即可得到答案.【詳解】因為,所以,則.故選:A【點睛】本題主要考查反余弦函數(shù)的運用,熟練掌握反余弦函數(shù)的概念及性質(zhì)是解決本題的關(guān)鍵.4、B【解析】
正四棱錐,連接底面對角線,在中,為側(cè)棱與地面所成角,通過邊的關(guān)系得到答案.【詳解】正四棱錐,連接底面對角線,,易知為等腰直角三角形.中點為,又正四棱錐知:底面即為所求角為,答案為B【點睛】本題考查了線面夾角的計算,意在考察學(xué)生的計算能力和空間想象力.5、B【解析】
首先“冬至”時日影長度最大,為1350分,“夏至”時日影長度最小,為160分,即可求出,進而求出立春”時日影長度為.【詳解】解:一年有二十四個節(jié)氣,每相鄰兩個節(jié)氣之間的日影長度差為分,且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分.,解得,“立春”時日影長度為:分.故選B.【點睛】本題考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,利用等差數(shù)列的性質(zhì)直接求解.6、C【解析】
由題得z=x2+4y2-3xy≥4xy-3xy=xy(x,y,z>0),即z≥xy,≥1.當(dāng)且僅當(dāng)x=2y時等號成立,則x+2y-z=2y+2y-(4y2-6y2+4y2)=4y-2y2=-2(y2-2y)=-2[(y-1)2-1]=-2(y-1)2+2.當(dāng)y=1時,x+2y-z有最大值2.故選C.7、B【解析】
先化簡集合A,B,再求A∩B.【詳解】由題得B={x|-1≤x≤3},A=?所以A∩B=π故選:B【點睛】本題主要考查一元二次不等式的解法和集合的交集運算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題,8、D【解析】
利用斜二測畫法中平行于坐標(biāo)軸的直線,平行關(guān)系不變這個原則得出的形狀.【詳解】在斜二測畫法中,平行于坐標(biāo)軸的直線,平行關(guān)系不變,則在原圖形中,軸,軸,所以,,因此,是直角三角形,故選D.【點睛】本題考查斜二測直觀圖還原,解題時要注意直觀圖的還原原則,并注意各線段長度的變化,考查分析能力,屬于基礎(chǔ)題.9、B【解析】
寫出與126°的角終邊相同的角的集合,取k=1得答案.【詳解】解:與126°的角終邊相同的角的集合為{α|α=126°+k?360°,k∈Z}.取k=1,可得α=486°.∴與126°的角終邊相同的角是486°.故選B.【點睛】本題考查終邊相同角的計算,是基礎(chǔ)題.10、A【解析】
直接利用等差數(shù)列公式和等比中項公式得到答案.【詳解】是與的等比中項,故即解得:故選:A【點睛】本題考查了等差數(shù)列和等比中項,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將代入即可求解【詳解】令,可得.故答案為:【點睛】本題考查求數(shù)列的項,是基礎(chǔ)題12、【解析】
先求出,再根據(jù)面積得到,再利用余弦定理和基本不等式得解.【詳解】由題得,所以.由余弦定理得,當(dāng)且僅當(dāng)時取等.所以b的最小值是.故答案為:【點睛】本題主要考查余弦定理解三角形,考查基本不等式求最值,意在考查學(xué)生對這些知識的理解掌握水平.13、【解析】因為圓心在直線上,設(shè)圓心,則圓的方程為,設(shè)點,因為,所以,化簡得,即,所以點在以為圓心,為半徑的圓上,則,即,整理得,由,得,由,得,所以圓心的縱坐標(biāo)的取值范圍是.點睛:本題主要考查了圓的方程,動點的軌跡方程、兩圓的位置關(guān)系、解不等式等知識的綜合運用,著重考查了轉(zhuǎn)化與化歸思想和學(xué)生的運算求解能力,解答中根據(jù)題設(shè)條件得到動點的軌跡方程,利用兩圓的位置關(guān)系,列出不等式上解答的關(guān)鍵.對于直線與圓的位置關(guān)系問題,要熟記有關(guān)圓的性質(zhì),同時注意數(shù)形結(jié)合思想的靈活運用.14、【解析】
根據(jù)誘導(dǎo)公式和特殊角的三角函數(shù)值可計算出結(jié)果.【詳解】由題意可得,原式.故答案為.【點睛】本題考查誘導(dǎo)公式和特殊三角函數(shù)值的計算,考查計算能力,屬于基礎(chǔ)題.15、【解析】
先求出四棱錐的底面對角線的長度,結(jié)合勾股定理可求出四棱錐的高,然后由圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,可知四條側(cè)棱的中點連線為正方形,其對角線為圓柱底面的直徑,圓柱的高為四棱錐的高的一半,分別求解可求出圓柱的側(cè)面積.【詳解】由題可知,四棱錐是正四棱錐,四棱錐的四條側(cè)棱的中點連線為正方形,邊長為,該正方形對角線的長為1,則圓柱的底面半徑為,四棱錐的底面是邊長為的正方形,其對角線長為2,則四棱錐的高為,故圓柱的高為1,所以圓柱的側(cè)面積為.【點睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,考查了學(xué)生的空間想象能力與計算求解能力,屬于中檔題.16、【解析】
作出函數(shù)的圖像,根據(jù)圖像可得答案.【詳解】因為,所以,所以,所以,作出函數(shù)的圖像,由圖可知故答案為:【點睛】本題考查了正弦型函數(shù)的圖像,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳證見解析;(2)詳證見解析.【解析】
(1)可通過連接交于,通過中位線證明和平行得證平面.(2)可通過正方形得證,通過平面得證,然后通過線面垂直得證面面垂直.【詳解】(1)證明:連交于O,因為四邊形是正方形,所以,連,則是三角形的中位線,,平面,平面所以平面.(2)因為平面,所以,因為是正方形,所以,所以平面,所以平面平面.【點睛】證明線面平行可通過線線平行得證,證明面面垂直可通過線面垂直得證.18、(1);(2)【解析】
(1)將化簡代入數(shù)據(jù)得到答案.(2)利用余弦定理和均值不等式計算,代入面積公式得到答案.【詳解】;(2)由,可得,由余弦定理可得,即有,當(dāng)且僅當(dāng),取得等號.則面積為.即有時,的面積取得最大值.【點睛】本題考查了三角恒等變換,余弦定理,面積公式,均值不等式,屬于??碱}型.19、(1)見解析;(2)見解析【解析】
(1)通過邊長關(guān)系可知,所以,又,所以平面,所以平面平面.(2)連接交與點,連接,易得∽,所以,所以直線平面.,【詳解】(1)因為,,所以,所以又,且,平面,平面所以平面又平面所以平面平面(2)連接交與點,連接在四邊形中,,∽,所以又,即所以又直線平面,直線平面所以直線平面【點睛】(1)證明面面垂直:先正線面垂直,線又屬于另一個面,即可證明面面垂直.(2)證明線面平行,在面內(nèi)找一個線與已知直線平行即可.20、(1)(2)【解析】
(1)通過降次公式和輔助角公式化簡函數(shù)得到,再根據(jù)周期公式得到答案.(2)根據(jù)(1)中函數(shù)表達式,直接利用單調(diào)區(qū)間公式得到答案.【詳解】(1)由題意得.可得:函數(shù)的最小正周期(2)由,得,所以函數(shù)的單調(diào)遞增區(qū)間為.【點睛】本題考查三角函數(shù)的最小正周期,函數(shù)的單調(diào)區(qū)間,將函數(shù)化簡為標(biāo)準(zhǔn)形式是解題的關(guān)鍵,意在考查學(xué)生對于三角函數(shù)性質(zhì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)英語冀教版 (三年級起點)四年級下冊Lesson 5 Where Is Danny教學(xué)設(shè)計
- 小學(xué)唱歌 幸福拍手歌教案設(shè)計
- 民爆企業(yè)安全操作規(guī)程培訓(xùn)
- 三類醫(yī)療器械租賃合同樣本
- 數(shù)學(xué)核心素養(yǎng)培訓(xùn)
- 小學(xué)科學(xué)青島版 (六三制2017)四年級下冊10 登上月球公開課教案
- 冷鏈物流服務(wù)合作協(xié)議
- 中信建投證券財務(wù)顧問合同范本
- 悅納自我自信人生(教學(xué)設(shè)計)2023-2024學(xué)年初三下學(xué)期教育主題班會
- 公司團隊打造培訓(xùn)
- 建筑立面十八式,你用過幾個?
- 三只小豬的真實故事
- (高清正版)T-CAGHP 031—2018 地質(zhì)災(zāi)害危險性評估及咨詢評估預(yù)算標(biāo)準(zhǔn)(試行)
- 第九章 放射線對人體影響
- 屋面防水翻新改造工程施工方案(全面完整版)
- 教案(餐巾折花)
- 有限公司章程(AB股架構(gòu)).docx
- 北京市中小學(xué)生天文知識競賽復(fù)習(xí)題庫
- GJB300797靜電標(biāo)準(zhǔn)doc
- 《把課堂還給學(xué)生》論文
- 輸電線路安全文明施工方案
評論
0/150
提交評論