2023屆北京市第一五九中學數(shù)學高一第二學期期末經(jīng)典試題含解析_第1頁
2023屆北京市第一五九中學數(shù)學高一第二學期期末經(jīng)典試題含解析_第2頁
2023屆北京市第一五九中學數(shù)學高一第二學期期末經(jīng)典試題含解析_第3頁
2023屆北京市第一五九中學數(shù)學高一第二學期期末經(jīng)典試題含解析_第4頁
2023屆北京市第一五九中學數(shù)學高一第二學期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.的內(nèi)角的對邊分別為,分別根據(jù)下列條件解三角形,其中有兩解的是()A.B.C.D.2.若一個正四棱錐的側(cè)棱和底面邊長相等,則該正四棱錐的側(cè)棱和底面所成的角為()A.30° B.45° C.60° D.90°3.圓的半徑為()A.1 B.2 C.3 D.44.直線l:與圓C:交于A,B兩點,則當弦AB最短時直線l的方程為A. B.C. D.5.已知函數(shù),若在區(qū)間內(nèi)沒有零點,則的取值范圍是A. B. C. D.6.已知直線,平面,且,下列條件中能推出的是()A. B. C. D.與相交7.在長方體中,,,則異面直線與所成角的余弦值為()A. B. C. D.8.如圖,在四棱錐中,底面,底面為直角梯形,,,則直線與平面所成角的大小為()A. B. C. D.9.若向量,且,則等于()A. B. C. D.10.設(shè)數(shù)列是公差不為零的等差數(shù)列,它的前項和為,且、、成等比數(shù)列,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知正三棱柱木塊,其中,,一只螞蟻自點出發(fā)經(jīng)過線段上的一點到達點,當沿螞蟻走過的最短路徑,截開木塊時,兩部分幾何體的體積比為______.12._______________。13.若關(guān)于x的不等式的解集是,則_________.14.設(shè),且,則的取值范圍是______.15.已知,,,是球的球面上的四點,,,兩兩垂直,,且三棱錐的體積為,則球的表面積為______.16.已知等差數(shù)列的前項和為,若,則=_______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,求的值.18.如圖,在直三棱柱中,,為的中點,為的中點.(1)求證:平面;(2)求證:.19.△ABC中,a=7,c=3,且=.(1)求b;(2)求∠A.20.已知函數(shù)(1)解關(guān)于的不等式;(2)若,令,求函數(shù)的最小值.21.為了對某課題進行研究,用分層抽樣方法從三所高校,,的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人).高校相關(guān)人員抽取人數(shù)A18B362C54(1)求,;(2)若從高校,抽取的人中選2人做專題發(fā)言,求這2人都來自高校的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

運用正弦定理公式,可以求出另一邊的對角正弦值,最后還要根據(jù)三角形的特點:“大角對大邊”進行合理排除.【詳解】A.,由所以不存在這樣的三角形.B.,由且所以只有一個角BC.中,同理也只有一個三角形.D.中此時,所以出現(xiàn)兩個角符合題意,即存在兩個三角形.所以選擇D【點睛】在直接用正弦定理求另外一角中,求出后,記得一定要去判斷是否會出現(xiàn)兩個角.2、B【解析】

正四棱錐,連接底面對角線,在中,為側(cè)棱與地面所成角,通過邊的關(guān)系得到答案.【詳解】正四棱錐,連接底面對角線,,易知為等腰直角三角形.中點為,又正四棱錐知:底面即為所求角為,答案為B【點睛】本題考查了線面夾角的計算,意在考察學生的計算能力和空間想象力.3、A【解析】

將圓的一般方程化為標準方程,確定所求.【詳解】因為圓,所以,所以,故選A.【點睛】本題考查圓的標準方程與一般方程互化,圓的標準方程通過展開化為一般方程,圓的一般方程通過配方化為標準方程,屬于簡單題.4、A【解析】

先求出直線經(jīng)過的定點,再求出弦AB最短時直線l的方程.【詳解】由題得,所以直線l過定點P.當CP⊥l時,弦AB最短.由題得,所以.所以直線l的方程為.故選:A【點睛】本題主要考查直線過定點問題,考查直線方程的求法,考查直線和圓的位置關(guān)系,意在考查學生對這些知識的理解掌握水平和分析推理能力.5、B【解析】

函數(shù),由,可得,,因此即可得出.【詳解】函數(shù)由,可得解得,∵在區(qū)間內(nèi)沒有零點,

.故選B.【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)、不等式的解法,考查了推理能力與計算能力,屬于中檔題.6、C【解析】

根據(jù)線面垂直的性質(zhì),逐項判斷即可得出結(jié)果.【詳解】A中,若,由,可得;故A不滿足題意;B中,若,由,可得;故B不滿足題意;C中,若,由,可得;故C正確;D中,若與相交,由,可得異面或平,故D不滿足題意.故選C【點睛】本題主要考查線面垂直的性質(zhì),熟記線面垂直的性質(zhì)定理即可,屬于??碱}型.7、C【解析】

連接,交于,取的中點,連接、,可以證明是異面直線與所成角,利用余弦定理可求其余弦值.【詳解】連接,交于,取的中點,連接.由長方體可得四邊形為矩形,所以為的中點,因為為的中點,所以,所以或其補角是異面直線與所成角.在直角三角形中,則,,所以.在直角三角形中,,在中,,故選C.【點睛】空間中的角的計算,可以建立空間直角坐標系把角的計算歸結(jié)為向量的夾角的計算,也可以構(gòu)建空間角,把角的計算歸結(jié)平面圖形中的角的計算.8、A【解析】

取中點,中點,連接,先證明為所求角,再計算其大小.【詳解】取中點,中點,連接.設(shè)易知:平面平面易知:四邊形為平行四邊形平面,即為直線與平面所成角故答案選A【點睛】本題考查了線面夾角,先找出線面夾角是解題的關(guān)鍵.9、B【解析】

根據(jù)坐標形式下向量的平行對應的等量關(guān)系,即可計算出的值,再根據(jù)坐標形式下向量的加法即可求解出的坐標表示.【詳解】因為且,所以,所以,所以.故選:B.【點睛】本題考查根據(jù)坐標形式下向量的平行求解參數(shù)以及向量加法的坐標運算,難度較易.已知,若則有.10、A【解析】

設(shè)等差數(shù)列的公差為,根據(jù)得出與的等量關(guān)系,即可計算出的值.【詳解】設(shè)等差數(shù)列的公差為,由于、、成等比數(shù)列,則有,所以,,化簡得,因此,.故選:A.【點睛】本題考查等差數(shù)列前項和中基本量的計算,解題的關(guān)鍵就是結(jié)合題意得出首項與公差的等量關(guān)系,考查計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

將正三棱柱的側(cè)面沿棱展開成平面,連接與的交點即為滿足最小時的點,可知點為棱的中點,即可計算出沿著螞蟻走過的路徑截開木塊時兩幾何體的體積之比.【詳解】將正三棱柱沿棱展開成平面,連接與的交點即為滿足最小時的點.由于,,再結(jié)合棱柱的性質(zhì),可得,一只螞蟻自點出發(fā)經(jīng)過線段上的一點到達點,當沿螞蟻走過的最短路徑,為的中點,因為三棱柱是正三棱柱,所以當沿螞蟻走過的最短路徑,截開木塊時,兩部分幾何體的體積比為:.故答案為:.【點睛】本題考查棱柱側(cè)面最短路徑問題,涉及棱柱側(cè)面展開圖的應用以及幾何體體積的計算,考查分析問題解決問題能力,是中檔題.12、【解析】

本題首先可根據(jù)同角三角函數(shù)關(guān)系式化簡得出,然后根據(jù)兩角差的正弦公式化簡得出,最后根據(jù)二倍角公式以及三角函數(shù)誘導公式即可得出結(jié)果?!驹斀狻?,故答案為【點睛】本題考查根據(jù)三角函數(shù)相關(guān)公式進行化簡求值,考查到的公式有、、以及,考查化歸與轉(zhuǎn)化思想,是中檔題。13、-14【解析】

由不等式的解集求出對應方程的實數(shù)根,利用根與系數(shù)的關(guān)系求出的值,從而可得結(jié)果.【詳解】不等式的解集是,所以對應方程的實數(shù)根為和,且,由根與系數(shù)的關(guān)系得,解得,,故答案為.【點睛】本題主要考查一元二次不等式的解集與一元二次不等式的根之間的關(guān)系,以及韋達定理的應用,屬于簡單題.14、【解析】

通過可求得x的取值范圍,接著利用反正弦函數(shù)的定義可得的取值范圍.【詳解】,,即.由反正弦函數(shù)的定義可得,即的取值范圍為.故答案為:.【點睛】本題主要考查余弦函數(shù)的定義域和值域,反正弦函數(shù)的定義,屬于基礎(chǔ)題.15、【解析】

根據(jù)三棱錐的體積可求三棱錐的側(cè)棱長,補體后可求三棱錐外接球的直徑,從而可計算外接球的表面積.【詳解】三棱錐的體積為,故,因為,,兩兩垂直,,故可把三棱錐補成正方體,該正方體的體對角線為三棱錐外接球的直徑,又體對角線的長度為,故球的表面積為.填.【點睛】幾何體的外接球、內(nèi)切球問題,關(guān)鍵是球心位置的確定,必要時需把球的半徑放置在可解的幾何圖形中.如果球心的位置不易確定,則可以把該幾何體補成規(guī)則的幾何體,便于球心位置和球的半徑的確定.16、【解析】

利用等差數(shù)列前項和,可得;利用等差數(shù)列的性質(zhì)可得,然后求解三角函數(shù)值即可.【詳解】等差數(shù)列的前項和為,因為,所以;又,所以.故答案為:.【點睛】本題考查等差數(shù)列的前項和公式和等差數(shù)列的性質(zhì)的應用,熟練掌握和若,則是解題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】

由即,解得:(因為舍去)或.18、(1)見解析(2)見解析【解析】

(1)連、相交于點,證明四邊形為平行四邊形,得到,證明平面(2)證明平面推出【詳解】證明:(1)如圖,連、相交于點,,,,,,,∴四邊形為平行四邊形,,平面,平面,平面,…(2)連因為三棱柱是直三棱柱,底面,平面,,,,,,平面,平面,.【點睛】本題考查了線面平行,線線垂直,線面垂直,意在考查學生的空間想象能力.19、(1);(2)∠A=120°.【解析】

由正弦定理求得b,由余弦定理求得cos∠A,進而求出∠A的值.【詳解】(1)由正弦定理得=可得,==,所以b==1.(2)由余弦定理得cosA===,又因為,所以∠A=120°.【點睛】本題考查正弦定理、余弦定理的應用,屬基礎(chǔ)題,根據(jù)正弦定理求出b的值,是解題的關(guān)鍵.20、(1)答案不唯一,具體見解析(2)【解析】

(1)討論的范圍,分情況得的三個答案.(2)時,寫出表達式,利用均值不等式得到最小值.【詳解】(1)①當時,不等式的解集為,②當時,不等式的解集為,③當時,不等式的解集為(2)若時,令(當且僅當,即時取等號).故函數(shù)的最小值為.【點睛】本題考查了解不等式,均值不等式,函數(shù)的最小值,意在考查學生的綜合應用能力.21、(1),(2)【解析】

(1)根據(jù)分層抽樣的概念,可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論