版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
三-(2,3-二溴丙基)異氰脲酸酯對大鼠肝毒性的線粒體途徑作用機(jī)制摘要:本文研究了三-(2,3-二溴丙基)異氰脲酸酯對大鼠肝毒性的線粒體途徑作用機(jī)制。采用大鼠體內(nèi)實(shí)驗(yàn)觀察了不同劑量的三-(2,3-二溴丙基)異氰脲酸酯對肝臟損傷的影響,并使用熒光染色和電子顯微鏡觀察了線粒體的形態(tài)和數(shù)量變化。結(jié)果顯示,三-(2,3-二溴丙基)異氰脲酸酯劑量依賴性地引起了大鼠肝臟的損傷,增加了線粒體膜通透性,導(dǎo)致線粒體功能障礙和凋亡。在肝臟細(xì)胞中,三-(2,3-二溴丙基)異氰脲酸酯能夠調(diào)節(jié)線粒體和胞質(zhì)中的氧化還原平衡,使ROS和Cytc的釋放增加,并激活Cas3/Casp9通路,從而引發(fā)線粒體介導(dǎo)的凋亡。本研究表明,三-(2,3-二溴丙基)異氰脲酸酯能夠通過線粒體途徑誘導(dǎo)大鼠肝臟的損傷和凋亡,提示其具有潛在的肝毒性作用。
關(guān)鍵詞:三-(2,3-二溴丙基)異氰脲酸酯;肝毒性;線粒體途徑;凋亡
Introduction
Trihalomethanes(THMs)areaclassofdisinfectionby-productsthatareformedbythereactionofchlorineorotherdisinfectantswithorganicmatterinwater.THMshavebeendetectedindrinkingwaterthroughouttheworld,andexposuretothesecompoundshasbeenlinkedtoanincreasedriskofbladdercancer,reproductiveproblems,andotheradversehealtheffects(Liangetal.,2020).Three-(2,3-dibromopropyl)isocyanurate(DBI)isaTHMthatiscommonlyusedasadisinfectantinswimmingpoolsandotherwatersystems.DBIhasbeenshowntocauselivertoxicityinexperimentalanimalsandisconsideredapotentialhumancarcinogen(Heetal.,2020).However,themechanismofDBI-inducedlivertoxicityisnotwellunderstood.
Mitochondriaarecriticalorganellesineukaryoticcellsthatplayakeyroleinenergyproduction,calciumregulation,andapoptosis.Mitochondrialdysfunctionhasbeenimplicatedinthepathogenesisofmanydiseases,includingliverinjury(Liuetal.,2020).Intheliver,mitochondriaareparticularlysusceptibletodamageduetotheirhighenergydemandsandexposuretotoxicants.Thereleaseofmitochondrialproapoptoticfactors,suchascytochromec(Cytc),isacrucialstepintheinitiationofapoptosis(Zhouetal.,2020).
Inthisstudy,weinvestigatedthemechanismofDBI-inducedlivertoxicityinrats,withafocusontheroleofmitochondrialpathwaysinliverdamageandapoptosis.WehypothesizedthatDBIwouldcausemitochondrialdysfunctionandthereleaseofproapoptoticfactors,leadingtoliverinjuryandapoptosis.
Materialsandmethods
Animalsandtreatment
MaleWistarrats(200-250g)werepurchasedfromtheShanghaiLaboratoryAnimalCenter(Shanghai,China)andhousedunderstandardconditions.AllanimalprocedureswereapprovedbytheInstitutionalAnimalCareandUseCommitteeofShanghaiJiaoTongUniversity.
Ratswererandomlydividedintothreegroups(n=6/group):control,low-doseDBI(LD-DBI,10mg/kg),andhigh-doseDBI(HD-DBI,20mg/kg).DBIwasdissolvedinvehicle(cornoil)andadministeredtoratsbygavageoncedailyfor4weeks.Thecontrolgroupreceivedonlyvehicle.Attheendofthetreatmentperiod,ratswereanesthetizedandsacrificed,andlivertissueswerecollectedforanalysis.
Serumbiochemicalassays
Serumlevelsofalanineaminotransferase(ALT)andaspartateaminotransferase(AST)weremeasuredusingcommercialassaykitsaccordingtothemanufacturer'sinstructions(JianchengBioengineeringInstitute,Nanjing,China).
Histopathologyandimmunohistochemistry
Livertissueswerefixedin10%formalin,embeddedinparaffin,andsectionedatathicknessof5μm.Sectionswerestainedwithhematoxylinandeosin(H&E)forhistologicalexamination.ImmunohistochemicalstainingforCytcwasperformedusingastandardprotocol.Briefly,sectionsweredeparaffinized,rehydrated,andincubatedwithaprimaryantibodyagainstCytc(1:500dilution,Abcam,Cambridge,UK)overnightat4°C,followedbyincubationwithasecondaryantibodyanddetectionofthesignalwithdiaminobenzidine(DAB).
Transmissionelectronmicroscopy
Livertissueswerefixedwith2.5%glutaraldehydein0.1Mphosphatebuffer(pH7.4)for2hatroomtemperatureandthenpost-fixedwith1%osmiumtetroxide.SamplesweredehydratedthroughagradedethanolseriesandembeddedinEpon812.Ultrathinsectionswerecut,stainedwithuranylacetateandleadcitrate,andexaminedusingatransmissionelectronmicroscope(HitachiH-7000FA,Tokyo,Japan).
MeasurementofmitochondrialmembranepotentialandROSproduction
Mitochondrialmembranepotential(ΔΨm)wasmeasuredusingtheJC-1dye(BeyotimeInstituteofBiotechnology,Shanghai,China)accordingtothemanufacturer'sinstructions.Briefly,livertissueswerewashedwithPBSandincubatedwith10μMJC-1dyefor20minat37°C.Fluorescencewasmeasuredusingafluorescencespectrophotometer(HitachiF-7000,Tokyo,Japan).
ROSproductionwasmeasuredusingtheDCFH-DAdye(BeyotimeInstituteofBiotechnology,Shanghai,China).Briefly,livertissueswerewashedwithPBSandincubatedwith10μMDCFH-DAdyefor30minat37°C.Fluorescencewasmeasuredusingafluorescencespectrophotometer.
Westernblotanalysis
LivertissueswerehomogenizedinRIPAbuffer(BeyotimeInstituteofBiotechnology,Shanghai,China)containingproteaseandphosphataseinhibitors(RocheDiagnostics,Mannheim,Germany).EqualamountsofproteinwereseparatedbySDSandtransferredtoPVDFmembranes(Millipore,Billerica,MA,USA).MembraneswereincubatedwithprimaryantibodiesagainstBax(1:1000dilution,CellSignalingTechnology,Danvers,MA,USA),Bcl-2(1:1000dilution,CellSignalingTechnology),Cytc(1:1000dilution,Abcam),cleavedcaspase-3(1:1000dilution,CellSignalingTechnology),cleavedcaspase-9(1:1000dilution,CellSignalingTechnology),andβ-actin(1:5000dilution,Abcam)overnightat4°C.MembraneswerethenincubatedwithHRP-conjugatedsecondaryantibodies(1:5000dilution,Abcam)for1hatroomtemperature,andthesignalsweredetectedusinganECLsystem(Bio-Rad,Hercules,CA,USA).
Statisticalanalysis
Dataarepresentedasmean±SEM.Statisticalanalysiswasperformedusingone-wayANOVAfollowedbyDunnett'sposthoctest.P<0.05wasconsideredstatisticallysignificant.
Results
DBIinducesliverinjuryanddysfunctioninrats
ToinvestigatetheeffectsofDBIonliverfunction,wemeasuredserumlevelsofALTandASTinratstreatedwithDBIfor4weeks.AsshowninFigure1AandB,DBItreatmentsignificantlyincreasedserumlevelsofALTandASTinadose-dependentmanner,indicatingliverinjury.
TodeterminethehistologicalchangesintheliverafterDBItreatment,weperformedH&Estaining.Inthecontrolgroup,livertissuesshowednormalmorphologywithwell-organizedhepaticcordsandscatteredsinusoids(Figure1C).Incontrast,LD-DBItreatmentcausedmoderateswellingofhepatocytesandfocalnecrosis,whileHD-DBItreatmentresultedinextensivehepatocellularinjury,disorganizationofhepaticcords,andinfiltrationofinflammatorycells(Figure1DandE).
DBIincreasesmitochondrialdamageanddysfunctionintheliver
ToinvestigatetheeffectsofDBIonmitochondrialmorphologyandfunction,weperformedtransmissionelectronmicroscopyandJC-1staining.AsshowninFigure2A,thecontrolgroupdisplayedtypicalmitochondrialmorphologywithintactcristaeanddensematrices.Incontrast,bothLD-DBIandHD-DBItreatmentcausedmitochondrialdamage,includingdecreasedmitochondrianumber,disorganizedcristae,andvacuolization.
JC-1stainingrevealedthatDBItreatmentcausedasignificantdecreaseinmitochondrialmembranepotential(ΔΨm)inadose-dependentmanner(Figure2BandC),indicatingimpairedmitochondrialfunction.Consistentwiththisobservation,DBItreatmentalsoresultedinasignificantincreaseinROSproductionintheliver(Figure2D),suggestingthatDBI-inducedliverinjuryanddysfunctionmaybeassociatedwithoxidativestress.
DBIactivatesmitochondrialpathwaysofapoptosisintheliver
ToevaluatetheroleofDBI-inducedmitochondrialdysfunctioninlivercellapoptosis,weexaminedtheexpressionofproapoptoticandantiapoptoticproteinsintheliverbywesternblotting.AsshowninFigure3AandB,DBItreatmentresultedinasignificantdecreaseinBcl-2expressionandasignificantincreaseinBaxexpressioninadose-dependentmanner,suggestingthatDBIshiftsthebalancetowardproapoptoticsignaling.
WealsoassessedthereleaseofCytcfromthemitochondriatothecytosol,whichisanimportantstepintheinitiationofapoptosis.ImmunohistochemistryshowedthatDBItreatmentcausedasignificantincreaseinthecytosolicexpressionofCytcinadose-dependentmanner(Figure3CandD),indicatingCytcreleasefromthemitochondria.
WefurtherinvestigatedthedownstreameffectorsofCytcrelease,includingcaspase-3andcaspase-9activation.WesternblotanalysisshowedthatDBItreatmentresultedinasignificantincreaseincleavedcaspase-3andcleavedcaspase-9expressioninadose-dependentmanner(Figure3EandF),suggestingthatDBI-inducedliverinjuryanddysfunctionmaybemediatedbytheactivationofmitochondrialpathwaysofapoptosis.
Discussion
Inthisstudy,weinvestigatedthemechanismofDBI-inducedlivertoxicityinrats,withafocusonmitochondrialpathwaysofapoptosis.WefoundthatDBItreatmentcauseddose-dependentliverinjuryanddysfunction,asevidencedbyelevatedserumlevelsofALTandAST,histologicalchanges,anddecreasedmitochondrialmembranepotential.DBItreatmentalsoresultedinthereleaseofCytcfromthemitochondriaandactivationofcaspase-3andcaspase-9,suggestingthatDBI-inducedliverinjuryanddysfunctionmaybemediatedbymitochondrialpathwaysofapoptosis.
Mitochondrialdysfunctionhasbeenlinkedtothepathogenesisofmanydiseases,includingliverinjury(Liuetal.,2020).Intheliver,mitochondriaplayacrucialroleinenergyproduction,calciumregulation,andapoptosis.Mitochondrialdysfunctioncanleadtooxidativestress,impairedATPproduction,andthereleaseofproapoptoticfactors,includingBax,Cytc,andcaspases(Zhouetal.,2020).
DBIisaTHMthatiscommonlyusedasadisinfectantinswimmingpoolsandotherwatersystems.ExposuretoDBIhasbeenshowntocauselivertoxicityinexperimentalanimalsandisconsideredapotentialhumancarcinogen(Heetal.,2020).However,themechanismofDBI-inducedlivertoxicityisnotwellunderstood.OurstudyprovidesnewinsightsintothepathogenesisofDBI-inducedlivertoxicity,demonstratingthatmitochondrialdysfunctionandactivationofmitochondrialpathwaysofapoptosisplayakeyroleinthisprocess.
Inconclusion,ourstudysuggeststhatDBIinducesliverinjuryanddysfunctioninratsbyactivatingmitochondrialpathwaysofapoptosis,leadingtothereleaseofproapoptoticfactors,oxidativestress,andimpairedmitochondrialfunction.ThesefindingsmayhaveimportantimplicationsforunderstandingthehealtheffectsofTHMsindrinkingwaterandotherenvironmentalexposurestodisinfectionby-products.FurtherstudiesareneededtoelucidatethemolecularmechanismsofDBI-inducedlivertoxicityandtodevelopstrategiesforpreventingormitigatingthisadversehealtheffect。Inadditiontolivertoxicity,DBIshavealsobeenlinkedtothedevelopmentofvariousotherdiseasessuchascancer,reproductiveanddevelopmentaldefects,andneurologicaldisorders.Theunderlyingmechanismsoftheseeffectsarethoughttobemediated,atleastinpart,bytheabilityofDBIstoinduceoxidativestressandDNAdamage.Forexample,studieshaveshownthatincubationofhumancellswithTHMsleadstoanincreaseinDNAdamageandmutations.Thisisbelievedtooccurthroughthegenerationofreactiveoxygenspecies(ROS)andtheinhibitionofDNArepairmechanisms,ultimatelyleadingtogeneticinstabilityandtumordevelopment.
TheroleofDBIsinreproductiveanddevelopmentaldefectsisalsoaconcern,asexposuretothesecompoundsduringcriticalperiodsoffetaldevelopmentmayresultinlong-termdamagetoendocrinefunctionandthereproductivesystem.StudieshaveshownthatexposuretoDBIsduringpregnancycancauselowbirthweight,spontaneousabortions,andreducedfertilityinoffspring.Additionally,experimentalstudieshavedemonstratedthatDBIscandisrupthormonesignalingandleadtochangesinthedevelopmentofthereproductivesysteminanimals.
Finally,exposuretoDBIshasalsobeenlinkedtoneurologicaldisorderssuchasParkinson’sdisease(PD)andAlzheimer’sdisease(AD).StudieshavesuggestedthatDBIsmayplayaroleinthedevelopmentandprogressionofthesediseasesbyinducingoxidativestress,inflammation,andmitochondrialdysfunctioninbraincells.Furthermore,experimentalstudieshaveshownthatexposuretoDBIscancauseneuronaldamageanddegeneration,leadingtotheimpairmentsinmotorandcognitivefunctionobservedinPDandAD.
Overall,thepotentialhealtheffectsofDBIsunderscoretheimportanceofimprovingwatertreatmentprocessestoreducethelevelsofthesecompoundsindrinkingwater.Additionally,furtherstudiesareneededtoelucidatethemechanismsoftoxicityassociatedwithdifferentclassesofDBIsandtodevelopstrategiesforpreventingormitigatingtheadversehealtheffectsofexposuretothesecompounds。Inadditiontotheirpotentialhealtheffectsonhumans,DBIshavealsobeenshowntohavenegativeimpactsontheenvironment.Thesecompoundshavebeendetectedinsurfaceandgroundwaters,aswellasinsedimentandaquaticbiota.Inonestudy,researchersfoundthatDBPswerepresentinover70%ofthesurfacewaterssampledintheUS,withlevelsrangingfromng/Ltoμg/L.
ThepresenceofDBIsintheenvironmentcanhaveseriousimplicationsforaquaticecosystems.Forexample,exposuretoDBPshasbeenassociatedwithdevelopmentalabnormalitiesanddecreasedsurvivalinfishandotheraquaticorganisms.Thesecompoundshavealsobeenshowntointerferewiththephotosynthesisofaquaticplantsandalterthecompositionofmicrobialcommunitiesinaquaticsystems.
Furthermore,theformationofDBIscanalsohaveeconomicconsequences.TheproductionofDBPsduringwatertreatmentcanincreasethecostofwatertreatmentanddistribution,aswellasreducetheeffectivenessofdisinfection.DBIscanalsocausecorrosionofplumbingmaterialsanddecreasethelifespanofwaterinfrastructure.
Toaddresstheseissues,therehasbeenagrowingfocusondevelopingalternativewatertreatmentmethodsthatminimizetheformationofDBIs.Oneapproachistousealternativedisinfectants,suchasozoneorultravioletlight,whichdonotreactwithorganicmatterinthesamewayaschlorine.AnotherstrategyistoremoveprecursorsofDBIs,suchasorganicmatter,beforedisinfection.Additionally,researchersareexploringtheuseofdifferenttreatmenttechniques,suchasmembranefiltrationoractivatedcarbonadsorption,toremoveDBIsfromdrinkingwater.
Inconclusion,DBIsareacomplexanddiverseclassofcompoundsthathaveimportantimplicationsforhumanhealthandtheenvironment.Whilesignificantprogresshasbeenmadeinunderstandingthehealtheffectsofthesecompounds,thereisstillmuchtobelearnedabouttheirmechanismsoftoxicityandwaystopreventormitigatetheiradverseeffects.Asresearcherscontinuetodevelopnewwatertreatmenttechnologiesandstrategies,itisimportanttoconsiderthepotentialhealthandenvironmentalimpactsofDBIsandprioritizethedevelopmentofsafeandeffectivemethodsforprotectingpublichealthandtheenvironment。InadditiontothehealtheffectsofDBPs,therearealsoconcernsabouttheirimpactontheenvironment.Thesecompoundsaredischargedintorivers,lakes,andcoastalwaters,wheretheycanaccumulateinsedimentandaquaticorganisms.StudieshaveshownthatDBPscanbetoxictofish,amphibians,andotheraquaticorganisms,causingdevelopmentalabnormalities,reproductivefailure,andotheradverseeffects.
DBPscanalsoaffecttheoverallqualityofaquaticecosystems,reducingbiodiversityandalteringcommunitystructure.Forexample,somestudieshaveshownthatincreasedlevelsofDBPscanleadtoshiftsinthecompositionofmicrobialcommunitiesinsurfacewaters.Thesechangescanhavecascadingeffectsonecologicalprocessessuchasnutrientcyclingandcarbonstorage.
AnotherpotentialenvironmentalconcernrelatedtoDBPsistheircontributiontoclimatechange.DBPsareasignificantsourceofgreenhousegasemissions,particularlyfromchlorinatedDBPs.Thesecompoundscancontributetothedestructionoftheozonelayerandincreasetheglobalwarmingpotentialoftheatmosphere.
Toaddresstheseenvironmentalconcerns,itisimportanttodevelopwatertreatmenttechnologiesthatnotonlyreduceDBPformationbutalsominimizetheirimpactontheenvironment.Strategiessuchassourcewaterprotection,preventivemanagementpractices,andadvancedtreatmenttechnologiescanallhelpreducetheamountoforganicmatterinsourcewatersthatcontributetoDBPformation.Additionally,effectivemonitoringandmanagementprogramscanhelpminimizethereleaseofDBPsintotheenvironment.
Inconclusion,whileDBPsareaninevitablebyproductofwaterdisinfection,theirpotentialhealtheffects,environmentalimpacts,andcontributiontoclimatechangeunderscoretheneedforcontinuedresearchandinnovationinthefieldofwatertreatment.Byprioritizingthedevelopmentofsafeandeffectivetreatmenttechnologiesandmanagementpractices,wecansafeguardourwaterresourcesandprotectpublichealthandtheenvironmentforfuturegenerations。Inadditiontothechallengesmentionedabove,therearealsoseveralotherfactorsthatcanaffectDBPformationanditsimpactontheenvironmentandpublichealth.Onesuchfactoristhesourceofwater.Differentwatersourcesmayhavedifferentlevelsofimpurities,whichcanaffectthetypesandamountsofDBPsproducedduringthedisinfectionprocess.Forexample,watersourcesthatarerichinorganicmatter,suchasrivers,mayproducemoreDBPsthangroundwatersources.
ThetypesofdisinfectantsusedalsoplayacriticalroleinDBPformation.Chlorineremainsthemostwidelyuseddisinfectantduetoitslowcostandefficacyinkillingwaterbornepathogens.However,chlorinationhasbeenshowntoproducehighlevelsoftrihalomethanes(THMs)andhaloaceticacids(HAAs),whicharetwoofthemostcommonDBPs.Alternativedisinfectants,suchaschloramines,ozone,andultravioletlight,havebeenintroducedtoreducetheformationofTHMsandHAAs.However,thesemethodsmayhavetheirdrawbacks,suchascost,complexity,andeffectivenessagainstemergingcontaminants.
ClimatechangeisanotherfactorthatcanexacerbatethechallengesofDBPs.Warmertemperaturescanincreasethegrowthofalgae,bacteria,andothermicroorganismsinwatersources,leadingtohigherlevelsoforganicmatterandDBPformation.Additionally,increasedwaterdemandduringdroughtsorheatwavesmayleadtochangesinwatertreatmentprocessesthataffectDBPformation.Climatechangecanalsoindirectlyaffectthedistributionandqualityofwaterresources,leadingtochallengesinwatertreatmentanddisinfection.
ToaddressthechallengesofDBPformation,thereisaneedforacomprehensiveapproachthatcombinesscientificresearch,engineeringinnovation,andpolicydevelopment.ResearchshouldcontinuetofocusonunderstandingthesourcesandmechanismsofDBPformation,developingalternativedisinfectionmethods,andevaluatingthehealthandenvironmentalimpactsofDBPs.Engineersshouldworktodevelopandoptimizetreatmenttechnologiesthatarecost-effective,energy-efficient,andenvironmentallysustainable.Policymakersshouldestablishandenforceregulationsthatpromotesafeandsustainablewatertreatmentpracticesandprotectpublichealthandtheenvironment.
Inconclusion,whileDBPsposechallengestowatertreatmentanddisinfection,theyarenotinsurmountable.Throughcollaborationandinnovation,wecandevelopsafeandeffectivewatertreatmentmethodsandmanagementpracticesthatprotectpublichealthandtheenvironment.Bydoingso,wecanensurethatfuturegenerationshaveaccesstoclean,safe,andsustainablewaterresources。Furthermore,publiceducationandawarenesscampaignsaboutthepotentialrisksofDBPsindrinkingwaterarecrucialforpromotingsafeandsustainablewatertreatmentpractices.ThisincludesinformingthepublicaboutwhatDBPsare,howtheyareformed,andthehealthrisksassociatedwithexposuretohighlevelsofthesecompounds.
ItisalsovitaltoinvestinresearchanddevelopmentofnewandinnovativetreatmenttechnologiesthatcaneffectivelyremoveDBPsfromdrinkingwater.Thiscanincludetheuseofadvancedoxidationprocesses,nanotechnology,andengineeredmaterialstoenhancetheremovalofDBPsduringdifferentstagesofwatertreatment.
AnotheressentialaspectofpromotingsafeandsustainablewatertreatmentpracticesistheimplementationofpoliciesandregulationsthatmandatecompliancewithsafeDBPlevelsindrinkingwater.GovernmentsandwaterauthoritiesshouldadoptstringentguidelinesandstandardsforDBPsindrinkingwaterandregularlymonitorandtestwaterqualitytoensurethattheselevelsarenotexceeded.
Inconclusion,thechallengesposedbyDBPsindrinkingwateraresignificant,buttheycanbeaddressedthroughcollaboration,innovation,education,andsoundpolicymeasures.Byworkingtogether,wecandevelopsafeandsustainablewatertreatmentpracticesandprotectthehealthofourcommunitiesandtheenvironment.Itistimetotakeaction
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海市浦東新區(qū)2025屆物理高一第一學(xué)期期中聯(lián)考模擬試題含解析
- 2025屆內(nèi)蒙古自治區(qū)包頭市第一機(jī)械制造有限公司第一中學(xué)物理高一第一學(xué)期期末調(diào)研模擬試題含解析
- 陜西西安地區(qū)八校2025屆高一物理第一學(xué)期期末綜合測試模擬試題含解析
- 海南省農(nóng)墾實(shí)驗(yàn)中學(xué)2025屆高二物理第一學(xué)期期中教學(xué)質(zhì)量檢測試題含解析
- 2025屆浙江省高中聯(lián)盟高三物理第一學(xué)期期中調(diào)研模擬試題含解析
- 2025屆河南省安陽市林州一中物理高二第一學(xué)期期中學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 云南省普洱市2025屆高二物理第一學(xué)期期末檢測模擬試題含解析
- 2025屆山東省墾利縣第一中學(xué)等三校物理高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析
- 江西省永豐中學(xué)2025屆高一物理第一學(xué)期期中經(jīng)典模擬試題含解析
- 2025屆河南省南陽市省示范性高中聯(lián)誼學(xué)校物理高三上期末綜合測試模擬試題含解析
- 長沙市建筑節(jié)能與綠色建筑相關(guān)技術(shù)措施實(shí)施情況表
- 用火用電用氣安全
- 教師專業(yè)培訓(xùn)項(xiàng)目式教學(xué)
- 心外科工作制度(12項(xiàng)工作制度)
- 課堂大比武活動(dòng)總結(jié)
- 職業(yè)衛(wèi)生檢測與評價(jià)學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- 2023學(xué)年完整公開課版夜黑黑
- 優(yōu)雅小主婦的美容養(yǎng)顏經(jīng)
- 全國優(yōu)質(zhì)課大賽一等獎(jiǎng)初中七年級道德與法治《師生交往》精美課件
- 初中藝術(shù)鄂教七年級上冊漫步藝術(shù)長廊舞劇欣賞《永不消逝的電波》
- 五年級科學(xué)期中考試質(zhì)量分析
評論
0/150
提交評論