




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專(zhuān)項(xiàng)03折疊存在性及最值大全(填空壓軸)1.如圖,在菱形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為邊SKIPIF1<0的中點(diǎn),SKIPIF1<0為射線SKIPIF1<0上一動(dòng)點(diǎn),連接SKIPIF1<0,把SKIPIF1<0沿SKIPIF1<0折疊,得到SKIPIF1<0,當(dāng)SKIPIF1<0與菱形的邊垂直時(shí),線段SKIPIF1<0的長(zhǎng)為_(kāi)_____.【答案】SKIPIF1<0或SKIPIF1<0【分析】存在兩種情況①當(dāng)點(diǎn)F在線段AB上時(shí),由題意得出AE的長(zhǎng),在SKIPIF1<0中可求出AG的長(zhǎng),由SKIPIF1<0根據(jù)折疊的性質(zhì),可知SKIPIF1<0在SKIPIF1<0中,可求出GF的長(zhǎng),即可得出AF的長(zhǎng).②當(dāng)點(diǎn)F在線段AB延長(zhǎng)線上時(shí),由SKIPIF1<0得出SKIPIF1<0由SKIPIF1<0SKIPIF1<0中,求出SKIPIF1<0由SKIPIF1<0SKIPIF1<0得出SKIPIF1<0即可得出結(jié)果.【詳解】解:如圖1所示:當(dāng)點(diǎn)F在線段AB上時(shí),過(guò)點(diǎn)E作SKIPIF1<0于G,∵四邊形SKIPIF1<0是菱形,SKIPIF1<0SKIPIF1<0∵點(diǎn)E是AD的中點(diǎn),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0如圖2所示:當(dāng)點(diǎn)F在線段AB延長(zhǎng)線上時(shí),過(guò)點(diǎn)E作SKIPIF1<0SKIPIF1<0交AD于點(diǎn)H,∵四邊形SKIPIF1<0是菱形,SKIPIF1<0SKIPIF1<0∵點(diǎn)E是AD的中點(diǎn),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0又SKIPIF1<0SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<0或SKIPIF1<0【我思故我在】本題主要考查了菱形的性質(zhì),折疊的性質(zhì),銳角三角函數(shù)的知識(shí),區(qū)分點(diǎn)F的位置在線段AB上和在線段AB的延長(zhǎng)線上是解本題的關(guān)鍵.2.如圖,菱形SKIPIF1<0的邊長(zhǎng)SKIPIF1<0,M是SKIPIF1<0邊上一點(diǎn),SKIPIF1<0,N是SKIPIF1<0邊上一動(dòng)點(diǎn),將梯形SKIPIF1<0沿直線SKIPIF1<0折疊,C對(duì)應(yīng)點(diǎn)SKIPIF1<0.當(dāng)SKIPIF1<0的長(zhǎng)度最小時(shí),SKIPIF1<0的長(zhǎng)為_(kāi)_________.【答案】14【分析】作SKIPIF1<0于H,如圖,根據(jù)菱形的性質(zhì)可求得SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,利用勾股定理計(jì)算出SKIPIF1<0,再根據(jù)兩點(diǎn)間線段最短得到當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0上時(shí),SKIPIF1<0的值最小,然后證明SKIPIF1<0即可.【詳解】解:作SKIPIF1<0于H,如圖,∵菱形SKIPIF1<0的邊SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∵梯形SKIPIF1<0沿直線SKIPIF1<0折疊,C對(duì)應(yīng)點(diǎn)SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0上時(shí),SKIPIF1<0的值最小,由折疊的性質(zhì)得SKIPIF1<0,而SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故答案為:14.【我思故我在】本題考查了菱形的性質(zhì),折疊的性質(zhì),勾股定理等知識(shí),解決本題的關(guān)鍵是確定點(diǎn)SKIPIF1<0在SKIPIF1<0上時(shí),SKIPIF1<0的值最?。?.如圖,在四邊形紙片ABCD中,ADSKIPIF1<0BC,AB=10,∠B=60°,將紙片折疊,使點(diǎn)B落在AD邊上的點(diǎn)G處,折痕為EF,若∠BFE=45°,則BF的長(zhǎng)為_(kāi)_____.【答案】SKIPIF1<0【分析】由折疊的性質(zhì)知SKIPIF1<0,SKIPIF1<0,再由∠BFE=45°得到SKIPIF1<0,過(guò)點(diǎn)A作SKIPIF1<0于點(diǎn)H,在SKIPIF1<0中求出SKIPIF1<0的長(zhǎng)度,再證明四邊形SKIPIF1<0是矩形,從而得出SKIPIF1<0,即可解決問(wèn)題.【詳解】解:如圖,過(guò)點(diǎn)A作SKIPIF1<0于點(diǎn)H,由折疊的性質(zhì)知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0.【我思故我在】本題考查折疊的性質(zhì)、解直角三角形、矩形的判定與性質(zhì),根據(jù)已知角度和折疊的性質(zhì)得出SKIPIF1<0是解題的關(guān)鍵.4.如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在邊SKIPIF1<0上,并且SKIPIF1<0,點(diǎn)SKIPIF1<0為邊SKIPIF1<0上的動(dòng)點(diǎn),將SKIPIF1<0沿直線SKIPIF1<0翻折,點(diǎn)SKIPIF1<0落在點(diǎn)SKIPIF1<0處,則點(diǎn)SKIPIF1<0到邊SKIPIF1<0距離的最小值是________.【答案】1.2【分析】過(guò)點(diǎn)F作FG⊥AB,垂足為G,過(guò)點(diǎn)P作PD⊥AB,垂足為D,根據(jù)垂線段最短,得當(dāng)PD與FG重合時(shí)PD最小,利用相似求解即可.【詳解】∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴AB=10,∵SKIPIF1<0,將SKIPIF1<0沿直線SKIPIF1<0翻折,點(diǎn)SKIPIF1<0落在點(diǎn)SKIPIF1<0處,∴CF=PF=2,AF=AC-CF=6-2=4,過(guò)點(diǎn)F作FG⊥AB,垂足為G,過(guò)點(diǎn)P作PD⊥AB,垂足為D,根據(jù)垂線段最短,得當(dāng)PD與FG重合時(shí)PD最小,∵∠A=∠A,∠AGF=∠ACB,∴△AGF∽△ACB,∴SKIPIF1<0,∴SKIPIF1<0,∴FG=3.2,∴PD=FG-PF=3.2-2=1.2,故答案為:1.2.【我思故我在】本題考查了勾股定理,折疊的性質(zhì),三角形相似,垂線段最短,準(zhǔn)確找到最短位置,并利用相似求解是解題的關(guān)鍵.5.如圖,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是線段SKIPIF1<0上的一點(diǎn)(不與點(diǎn)SKIPIF1<0,SKIPIF1<0重合),將△SKIPIF1<0沿SKIPIF1<0折疊,使得點(diǎn)SKIPIF1<0落在SKIPIF1<0處,當(dāng)△SKIPIF1<0為等腰三角形時(shí),SKIPIF1<0的長(zhǎng)為_(kāi)__________.【答案】SKIPIF1<0或SKIPIF1<0【分析】根據(jù)題意分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三種情況討論,構(gòu)造直角三角形,利用勾股定理解決問(wèn)題.【詳解】解:∵四邊形SKIPIF1<0是矩形∴SKIPIF1<0,SKIPIF1<0∵將△SKIPIF1<0沿SKIPIF1<0折疊,使得點(diǎn)SKIPIF1<0落在SKIPIF1<0處,∴SKIPIF1<0SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0,則SKIPIF1<0①當(dāng)SKIPIF1<0時(shí),如圖過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,則四邊形SKIPIF1<0為矩形SKIPIF1<0SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中SKIPIF1<0SKIPIF1<0在SKIPIF1<0中SKIPIF1<0即SKIPIF1<0解得SKIPIF1<0SKIPIF1<0②當(dāng)SKIPIF1<0時(shí),如圖,設(shè)SKIPIF1<0交于點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0SKIPIF1<0垂直平分SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0中SKIPIF1<0即SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0即SKIPIF1<0聯(lián)立SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0③當(dāng)SKIPIF1<0時(shí),如圖,又SKIPIF1<0SKIPIF1<0垂直平分SKIPIF1<0SKIPIF1<0SKIPIF1<0垂直平分SKIPIF1<0此時(shí)SKIPIF1<0重合,不符合題意綜上所述,SKIPIF1<0或SKIPIF1<0故答案為:SKIPIF1<0或SKIPIF1<0【我思故我在】本題考查了矩形的性質(zhì),勾股定理,等腰三角形的性質(zhì)與判定,垂直平分線的性質(zhì),分類(lèi)討論是解題的關(guān)鍵.6.如圖,在矩形SKIPIF1<0中,SKIPIF1<0,對(duì)角線SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0分別是線段SKIPIF1<0,SKIPIF1<0上的點(diǎn),將SKIPIF1<0沿直線SKIPIF1<0折疊,點(diǎn)SKIPIF1<0,SKIPIF1<0分別落在點(diǎn)SKIPIF1<0,SKIPIF1<0處.當(dāng)點(diǎn)SKIPIF1<0落在折線SKIPIF1<0上,且SKIPIF1<0時(shí),SKIPIF1<0的長(zhǎng)為_(kāi)_____.【答案】2或SKIPIF1<0【分析】分兩種情況討論,由折疊的性質(zhì)和勾股定理可求解.【詳解】解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0落在SKIPIF1<0上時(shí),SKIPIF1<0將SKIPIF1<0沿直線SKIPIF1<0折疊,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;當(dāng)點(diǎn)SKIPIF1<0落在SKIPIF1<0上時(shí),如圖2,連接SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0將SKIPIF1<0沿直線SKIPIF1<0折疊,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,綜上所述:SKIPIF1<0的長(zhǎng)為2或SKIPIF1<0.【我思故我在】本題考查了矩形的性質(zhì),折疊的性質(zhì),勾股定理等知識(shí),利用勾股定理列出方程是解題的關(guān)鍵.7.在數(shù)學(xué)探究活動(dòng)中,小美將矩形ABCD紙片先對(duì)折,展開(kāi)后折痕是EF,點(diǎn)M為BC邊上一動(dòng)點(diǎn),連接AM,過(guò)點(diǎn)M作SKIPIF1<0交CD于點(diǎn)N.將SKIPIF1<0沿MN翻折,點(diǎn)C恰好落在線段EF上,已知矩形ABCD中SKIPIF1<0,SKIPIF1<0,那么BM的長(zhǎng)為_(kāi)______.【答案】4或SKIPIF1<0【分析】設(shè)BM=x,則CM=BC-BM=6-x,根據(jù)三角函數(shù)可得tan∠CMN=tan∠BAM=SKIPIF1<0,tan∠CMN=SKIPIF1<0,F(xiàn)N=CF-CN=SKIPIF1<0,由折疊可知∶C"N=CN=SKIPIF1<0,tanSKIPIF1<0=tan∠CMN=SKIPIF1<0,由tanSKIPIF1<0=SKIPIF1<0,可求SKIPIF1<0,在Rt△SKIPIF1<0中,由勾股定理,SKIPIF1<0,代入相關(guān)數(shù)據(jù)求解即可.【詳解】解:矩形ABCD中,AB=DC=4,BC=6,∠B=∠BCD=90°∴∠BAM+∠AMB=90°,∵M(jìn)N⊥AM,∴∠AMN=90°,∴∠CMN+∠AMB=90°,∴∠CMN=∠BAM,∵小美將矩形ABCD紙片先對(duì)折,展開(kāi)后折痕是EF,∴CF=SKIPIF1<0DC=2,設(shè)BM=x,則CM=BC-BM=6-x,在Rt△ABM中,tan∠BAMSKIPIF1<0∴tan∠CMN=tan∠BAM=SKIPIF1<0在Rt△CMN中,∴tan∠CMN=SKIPIF1<0CN=SKIPIF1<0∴FN=CF-CN=2-SKIPIF1<0由折疊可知∶C"N=CN=SKIPIF1<0連接SKIPIF1<0,如圖∶由折疊知∶MN垂直平分SKIPIF1<0,∴SKIPIF1<0+∠CMN=90°,而SKIPIF1<0=90°,∴SKIPIF1<0=∠CMN,∴tanSKIPIF1<0=tan∠CMN=SKIPIF1<0在Rt△CFC'中,tanSKIPIF1<0=SKIPIF1<0∴SKIPIF1<0在Rt△SKIPIF1<0中,由勾股定理,得SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0整理,得SKIPIF1<0,解得SKIPIF1<0∴BM的長(zhǎng)為4或SKIPIF1<0故答案為:4或SKIPIF1<0.【我思故我在】本題考查了矩形的性質(zhì),折疊的性質(zhì),解直角三角形,勾股定理,解一元二次方程等知識(shí),運(yùn)用三角函數(shù)將邊長(zhǎng)表示出來(lái),借助勾股定理建立方程是解題的關(guān)鍵.8.如圖,矩形ABCD中,AB=4,AD=6,點(diǎn)E為AD中點(diǎn),點(diǎn)P為線段AB上一個(gè)動(dòng)點(diǎn),連接EP,將△APE沿PE折疊得到△FPE,連接CE,DF,當(dāng)線段DF被CE垂直平分時(shí),AF則線的長(zhǎng)為_(kāi)______.【分析】連接AF交PE于O,連接DF,先由矩形的性質(zhì)可得BC=AD=6、CD=AB=4,再由折疊的性質(zhì)和垂直平分線的性質(zhì)可得AF=2OA,AE=ED=EF=3;設(shè)AP=x,則PF=AP=x,BP=4-x,PC=PF+FC=x+4,運(yùn)用勾股定理可求得x,然后再運(yùn)用勾股定理求得PE的長(zhǎng),再運(yùn)用等面積法求得AO的長(zhǎng),最后根據(jù)AF=2AO解答即可.【詳解】解:連接AF交PE于O,連接DF,∵矩形ABCD,∴BC=AD=6,CD=AB=4,∵線段DF被CE垂直平分時(shí),∴CF=CD=4,ED=EF,∵將△APE沿PE折疊得到△FPE,∴PE是線段AF的垂直平分線,∴AE=EF,AF=2OA,∴AE=ED=EF,∵AD=AE+ED=6,∴AE=ED=EF=3,設(shè)AP=x,則PF=AP=x,BP=4-x,PC=PF+FC=x+4,∵PC2=BP2+BC2,即(x+4)2=(4-x)2+62∴x=SKIPIF1<0,∵PE=SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得:AO=SKIPIF1<0,∴AF=2AO=SKIPIF1<0.故答案為SKIPIF1<0.【我思故我在】本題主要考查了矩形的性質(zhì)、折疊的性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理等知識(shí)點(diǎn),靈活應(yīng)用相關(guān)知識(shí)成為解答本題的關(guān)鍵.9.如圖,在矩形ABCD中,AB=2,AD=1,E是AB上一個(gè)動(dòng)點(diǎn),F(xiàn)是AD上一個(gè)動(dòng)點(diǎn)(點(diǎn)F不與點(diǎn)D重合),連接EF,把△AEF沿EF折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A′總落在DC邊上.若△A′EC是以A′E為腰的等腰三角形,則A′D的長(zhǎng)為_(kāi)_____.【答案】SKIPIF1<0或SKIPIF1<0【分析】分兩種情形分別畫(huà)出圖形,利用勾股定理構(gòu)建方程求解即可.【詳解】解:如圖1中,當(dāng)EA′=CE時(shí),過(guò)點(diǎn)E作EH⊥CD于H.∵四邊形ABCD是矩形,∴AD=BC=1,∠B=90°,設(shè)AE=EA′=EC=x,則BE=2﹣x,在Rt△EBC中,則有x2=12+(2﹣x)2,解得x=SKIPIF1<0,∴EB=2﹣x=SKIPIF1<0,∵∠B=∠BCH=∠CHE=90°,∴四邊形CBEH是矩形,∴CH=BE=SKIPIF1<0,∵EC=EA′,EH⊥CA′,∴HA′=CH=SKIPIF1<0,∴DA′=CD﹣CA′=2﹣SKIPIF1<0=SKIPIF1<0.如圖2中,當(dāng)A′E=A′C時(shí),設(shè)AE=EA′=CA′=y(tǒng).則CH=EB=2﹣y,A′H=CA′﹣CH=y(tǒng)﹣(2﹣y)=2y﹣2,在Rt△A′EH中,則有y2=12+(2y﹣2)2,解得y=SKIPIF1<0或1(舍棄),∴CA′=SKIPIF1<0,∴DA′=2﹣SKIPIF1<0=SKIPIF1<0,∴DA′為SKIPIF1<0或SKIPIF1<0,故答案為SKIPIF1<0或SKIPIF1<0.【我思故我在】本題考查翻折變換,矩形的性質(zhì),等腰三角形的判定和性質(zhì),解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類(lèi)討論的思想思考問(wèn)題,屬于中考??碱}型.10.如圖,長(zhǎng)方形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)E為射線SKIPIF1<0上一動(dòng)點(diǎn)(不與D重合),將SKIPIF1<0沿AE折疊得到SKIPIF1<0,連接SKIPIF1<0,若SKIPIF1<0為直角三角形,則SKIPIF1<0________【分析】分兩種情況討論:①當(dāng)點(diǎn)E在線段CD上時(shí),SKIPIF1<0三點(diǎn)共線,根據(jù)SKIPIF1<0可求得SKIPIF1<0,再由勾股定理可得SKIPIF1<0,進(jìn)而可計(jì)算SKIPIF1<0,在SKIPIF1<0中,由勾股定理計(jì)算SKIPIF1<0的值;②當(dāng)點(diǎn)E在射線CD上時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由勾股定理可解得SKIPIF1<0,進(jìn)而可計(jì)算SKIPIF1<0,在SKIPIF1<0中,由勾股定理計(jì)算SKIPIF1<0的值即可.【詳解】解:根據(jù)題意,四邊形ABCD為長(zhǎng)方形,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0沿AE折疊得到SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①如圖1,當(dāng)點(diǎn)E在線段CD上時(shí),∵SKIPIF1<0,∴SKIPIF1<0三點(diǎn)共線,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;∴在SKIPIF1<0中,SKIPIF1<0;②如圖2,當(dāng)點(diǎn)E在射線CD上時(shí),∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,∴在SKIPIF1<0中,SKIPIF1<0.綜上所述,AE的值為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【我思故我在】本題主要考查了折疊的性質(zhì)以及勾股定理等知識(shí),運(yùn)用分類(lèi)討論的思想分析問(wèn)題是解題關(guān)鍵.11.如圖,已知SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0、SKIPIF1<0分別在線段SKIPIF1<0、SKIPIF1<0上,將SKIPIF1<0沿直線SKIPIF1<0折疊,使點(diǎn)SKIPIF1<0的對(duì)應(yīng)點(diǎn)SKIPIF1<0恰好落在線段SKIPIF1<0上,當(dāng)SKIPIF1<0為直角三角形時(shí),折痕SKIPIF1<0的長(zhǎng)為_(kāi)__________.【答案】SKIPIF1<0或SKIPIF1<0【分析】由SKIPIF1<0為直角三角形,分兩種情況進(jìn)行討論:SKIPIF1<0分別依據(jù)含SKIPIF1<0角的直角三角形的性質(zhì)以及等腰直角三角形的性質(zhì),即可得到折痕SKIPIF1<0的長(zhǎng).【詳解】解:分兩種情況:SKIPIF1<0如圖,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是直角三角形,SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,由折疊可得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0如圖,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是直角三角形,由題可得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由折疊可得,SKIPIF1<0,SKIPIF1<0是等腰直角三角形,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【我思故我在】本題考查了翻折變換SKIPIF1<0折疊問(wèn)題,勾股定理,含SKIPIF1<0角的直角三角形的性質(zhì),等腰直角三角形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.12.如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0、SKIPIF1<0分別是邊SKIPIF1<0、SKIPIF1<0上的點(diǎn),且SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0對(duì)折,若點(diǎn)SKIPIF1<0恰好落到了SKIPIF1<0的外部,則折痕SKIPIF1<0的長(zhǎng)度范圍是______.【答案】SKIPIF1<0【分析】把SKIPIF1<0沿SKIPIF1<0對(duì)折,當(dāng)點(diǎn)SKIPIF1<0恰好落在SKIPIF1<0的SKIPIF1<0點(diǎn)處,SKIPIF1<0與SKIPIF1<0相交于SKIPIF1<0點(diǎn),根據(jù)折疊的性質(zhì)得到SKIPIF1<0,SKIPIF1<0,證明SKIPIF1<0,同理可得SKIPIF1<0,于是可得SKIPIF1<0的長(zhǎng),然后根據(jù)勾股定理計(jì)算SKIPIF1<0的長(zhǎng),由正切的定義可得SKIPIF1<0和SKIPIF1<0的長(zhǎng),計(jì)算SKIPIF1<0的長(zhǎng),再計(jì)算當(dāng)SKIPIF1<0與SKIPIF1<0重合時(shí)SKIPIF1<0的長(zhǎng),從而得結(jié)論.【詳解】解:把SKIPIF1<0沿SKIPIF1<0對(duì)折,當(dāng)點(diǎn)SKIPIF1<0恰好落在SKIPIF1<0的SKIPIF1<0點(diǎn)處,SKIPIF1<0與SKIPIF1<0相交于SKIPIF1<0點(diǎn),如圖1,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,同理可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;如圖2,當(dāng)SKIPIF1<0與SKIPIF1<0重合時(shí),SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0折痕SKIPIF1<0的長(zhǎng)度范圍是:SKIPIF1<0.故答案為:SKIPIF1<0.【我思故我在】本題考查了折疊的性質(zhì):折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.也考查了勾股定理和銳角三角函數(shù).13.如圖,在?ABCD中,點(diǎn)E,F(xiàn)分別在邊AB、AD上,將△AEF沿EF折疊,點(diǎn)A恰好落在BC邊上的點(diǎn)G處.若∠A=45°,AB=6SKIPIF1<0,5BE=AE.則AF長(zhǎng)度為_(kāi)____.【答案】SKIPIF1<0【分析】過(guò)點(diǎn)B作BM⊥AD于點(diǎn)M,過(guò)點(diǎn)F作FH⊥BC于點(diǎn)H,過(guò)點(diǎn)E作EN⊥CB延長(zhǎng)線于點(diǎn)N,得矩形BHFM,可得△BEN和△ABM是等腰直角三角形,然后利用勾股定理即可解決問(wèn)題.【詳解】解:如圖,過(guò)點(diǎn)B作BM⊥AD于點(diǎn)M,過(guò)點(diǎn)F作FH⊥BC于點(diǎn)H,過(guò)點(diǎn)E作EN⊥CB延長(zhǎng)線于點(diǎn)N,得矩形BHFM,∴∠MBC=90°,MB=FH,F(xiàn)M=BH,∵AB=6SKIPIF1<0,5BE=AE,∴AE=5SKIPIF1<0,BE=SKIPIF1<0,由折疊的性質(zhì)可知:GE=AE=5SKIPIF1<0,GF=AF,∵四邊形ABCD是平行四邊形,∴∠ABN=∠A=45°,∴△BEN和△ABM是等腰直角三角形,∴EN=BN=SKIPIF1<0BE=1,AM=BM=SKIPIF1<0AB=6,∴FH=BM=6,在Rt△GEN中,根據(jù)勾股定理,得SKIPIF1<0,∴SKIPIF1<0,解得GN=±7(負(fù)值舍去),∴GN=7,設(shè)MF=BH=x,則GH=GN-BN-BH=7-1-x=6-x,GF=AF=AM+FM=6+x,在Rt△GFH中,根據(jù)勾股定理,得SKIPIF1<0,∴SKIPIF1<0,解得x=SKIPIF1<0,∴AF=AM+FM=6+SKIPIF1<0=SKIPIF1<0.∴AF長(zhǎng)度為SKIPIF1<0.故答案為:SKIPIF1<0.【我思故我在】本題考查了翻折變換,平行四邊形的性質(zhì),等腰直角三角形的性質(zhì),勾股定理,解決本題的關(guān)鍵是掌握翻折的性質(zhì).14.如圖,矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0邊上的一個(gè)動(dòng)點(diǎn),將SKIPIF1<0沿SKIPIF1<0折疊,得到SKIPIF1<0,則當(dāng)SKIPIF1<0最小時(shí),折痕SKIPIF1<0長(zhǎng)為_(kāi)_____.【答案】SKIPIF1<0【分析】根據(jù)三角形的三邊關(guān)系得出:當(dāng)SKIPIF1<0最小時(shí)的圖形,利用勾股定理列出方程,求出SKIPIF1<0的長(zhǎng)度,進(jìn)行解答即可.【詳解】連接AC,依題意可知:SKIPIF1<0,如圖,當(dāng)A、C、F三點(diǎn)共線時(shí),SKIPIF1<0取得最小值,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,由折疊可知:SKIPIF1<0,設(shè)SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故答案為:SKIPIF1<0.【我思故我在】本題考查了矩形與折疊,勾股定理,二次根式的運(yùn)算,掌握勾股定理進(jìn)行求線段長(zhǎng)度是解題的關(guān)鍵.15.如圖,在正方形ABCD中,AB=8,E是CD上一點(diǎn),且DE=2,F(xiàn)是AD上一動(dòng)點(diǎn),連接EF,若將△DEF沿EF翻折后,點(diǎn)D落在點(diǎn)SKIPIF1<0處,則點(diǎn)SKIPIF1<0到點(diǎn)B的最短距離為_(kāi)_____.【答案】8【分析】連接SKIPIF1<0、SKIPIF1<0,當(dāng)B、SKIPIF1<0、E三點(diǎn)共線的時(shí)候點(diǎn)SKIPIF1<0到B點(diǎn)的距離最短,根據(jù)DE求出CE,再利用勾股定理求出BE,即可求解.【詳解】如圖,連接SKIPIF1<0、SKIPIF1<0,當(dāng)B、SKIPIF1<0、E三點(diǎn)共線的時(shí)候點(diǎn)SKIPIF1<0到B點(diǎn)的距離最短,在正方形ABCD中,AB=8,E是CD上一點(diǎn),且DE=2,∴CE=CD-DE=8-2=6,BC=AB=8,∴SKIPIF1<0,根據(jù)折疊的性質(zhì)有SKIPIF1<0,∵B、SKIPIF1<0、E三點(diǎn)共線∴SKIPIF1<0,即點(diǎn)SKIPIF1<0到B點(diǎn)的距離最短為8,故答案為:8.【我思故我在】本題考查了正方形的性質(zhì)、翻折的性質(zhì)、勾股定理以及兩點(diǎn)之間線段最短的知識(shí),找到B、SKIPIF1<0、E三點(diǎn)共線的時(shí)候點(diǎn)SKIPIF1<0到B點(diǎn)的距離最短是解答本題的關(guān)鍵.16.如圖,已知在矩形紙片SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)E是SKIPIF1<0的中點(diǎn),點(diǎn)F是SKIPIF1<0邊上的一個(gè)動(dòng)點(diǎn),將SKIPIF1<0沿SKIPIF1<0所在直線翻折,得到SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0是以SKIPIF1<0為腰的等腰三角形時(shí),SKIPIF1<0的長(zhǎng)是_______________.【答案】1或SKIPIF1<0【分析】存在三種情況:當(dāng)SKIPIF1<0時(shí),連接ED,利用勾股定理可以求得ED的長(zhǎng),可判斷SKIPIF1<0三點(diǎn)共線,根據(jù)勾股定理即可求解;當(dāng)SKIPIF1<0時(shí),可以證得四邊形SKIPIF1<0是正方形,即可求解;當(dāng)SKIPIF1<0時(shí),連接EC,F(xiàn)C,證明SKIPIF1<0三點(diǎn)共線,再用勾股定理,即可求解.【詳解】解:①當(dāng)SKIPIF1<0時(shí),連接ED,如圖,∵點(diǎn)E是SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,由勾股定理可得,SKIPIF1<0,∵將SKIPIF1<0沿SKIPIF1<0所在直線翻折,得到SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0三點(diǎn)共線,∵SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),如圖,∵SKIPIF1<0,∴點(diǎn)SKIPIF1<0在線段CD的垂直平分線上,∴點(diǎn)SKIPIF1<0在線段AB的垂直平分線上,∵點(diǎn)E是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0是AB的垂直平分線,∴SKIPIF1<0,∵將SKIPIF1<0沿SKIPIF1<0所在直線翻折,得到SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0是正方形,∴SKIPIF1<0;綜上所述,AF的長(zhǎng)為1或SKIPIF1<0.故答案為:1或SKIPIF1<0.【我思故我在】本題考查矩形中的翻折問(wèn)題,涉及矩形的性質(zhì)、等腰三角形的性質(zhì)、正方形的判定和性質(zhì)、勾股定理,分類(lèi)討論思想的運(yùn)用是解題的關(guān)鍵.17.如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為邊SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0是SKIPIF1<0邊上的動(dòng)點(diǎn),把SKIPIF1<0沿SKIPIF1<0翻折,點(diǎn)SKIPIF1<0落在SKIPIF1<0處,若SKIPIF1<0是直角三角形,則SKIPIF1<0的長(zhǎng)為_(kāi)_____.【答案】SKIPIF1<0或SKIPIF1<0【分析】在圖SKIPIF1<0中構(gòu)造正方形SKIPIF1<0,在SKIPIF1<0中即可解決問(wèn)題,在圖SKIPIF1<0中也要證明四邊形SKIPIF1<0是正方形解決問(wèn)題.【詳解】解:如圖SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),作SKIPIF1<0垂足為SKIPIF1<0,作SKIPIF1<0于SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度雇主免責(zé)協(xié)議書(shū):航空航天領(lǐng)域雇主責(zé)任界定合同
- 2025年度產(chǎn)業(yè)轉(zhuǎn)型升級(jí)信息咨詢(xún)服務(wù)合同
- 2025年度農(nóng)產(chǎn)品質(zhì)量安全監(jiān)管與風(fēng)險(xiǎn)評(píng)估合作協(xié)議
- 2025年度國(guó)際會(huì)展中心招商合作合同協(xié)議
- 2025年度臨時(shí)工臨時(shí)性數(shù)據(jù)錄入與處理合同
- 2025年度出租房屋裝修改造及租賃糾紛解決協(xié)議
- 2025年度區(qū)塊鏈技術(shù)應(yīng)用合伙投資合同
- 2025年度城市老舊建筑拆除勞務(wù)合作合同
- 2025年度教師聘用的教育教學(xué)改革與創(chuàng)新合同
- 親子樂(lè)園裝修合同樣板
- 部編版三年級(jí)下冊(cè)語(yǔ)文第一單元教材解讀PPT課件
- 【2022】154號(hào)文附件一:《江蘇省建設(shè)工程費(fèi)用定額》(2022年)營(yíng)改增后調(diào)整內(nèi)容[10頁(yè)]
- 二年級(jí)剪窗花
- 分子生物學(xué)在醫(yī)藥中的研究進(jìn)展及應(yīng)用
- 《對(duì)折剪紙》)ppt
- 03SG520-1實(shí)腹式鋼吊車(chē)梁(中輕級(jí)工作制A1~A5_Q235鋼_跨度6.0m、7.5m、9.0m)
- 以虛報(bào)注冊(cè)資本、虛假出資、抽逃出資為由對(duì)實(shí)行認(rèn)繳資本登記制的公司進(jìn)行處罰無(wú)法律依據(jù)
- 風(fēng)電場(chǎng)生產(chǎn)運(yùn)營(yíng)準(zhǔn)備大綱11.14
- 人教版八年級(jí)語(yǔ)文下冊(cè)教材研說(shuō)
- 《機(jī)械制造裝備設(shè)計(jì)》ppt課件
- 中學(xué)家訪記錄大全100篇 關(guān)于中學(xué)家訪隨筆
評(píng)論
0/150
提交評(píng)論