2021-2022學(xué)年江蘇省鹽城市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁
2021-2022學(xué)年江蘇省鹽城市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁
2021-2022學(xué)年江蘇省鹽城市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁
2021-2022學(xué)年江蘇省鹽城市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁
2021-2022學(xué)年江蘇省鹽城市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022學(xué)年江蘇省鹽城市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.建立共同愿景屬于()的管理觀念。

A.科學(xué)管理B.企業(yè)再造C.學(xué)習(xí)型組織D.目標(biāo)管理

2.

3.

4.

5.

6.設(shè)un≤aυn(n=1,2,…)(a>0),且收斂,則()A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個結(jié)論都不正確

7.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4

8.

9.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合10.A.

B.

C.

D.

11.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定12.設(shè)y=3-x,則y'=()。A.-3-xln3

B.3-xlnx

C.-3-x-1

D.3-x-1

13.

14.()有助于同級部門或同級領(lǐng)導(dǎo)之間的溝通了解。

A.上行溝通B.下行溝通C.平行溝通D.分權(quán)

15.

16.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)17.A.A.1B.2C.3D.418.設(shè)二元函數(shù)z=xy,則點P0(0,0)A.為z的駐點,但不為極值點B.為z的駐點,且為極大值點C.為z的駐點,且為極小值點D.不為z的駐點,也不為極值點19.()。A.

B.

C.

D.

20.設(shè)y=2x,則dy=A.A.x2x-1dx

B.2xdx

C.(2x/ln2)dx

D.2xln2dx

二、填空題(20題)21.

22.

23.

24.________.25.曲線y=x3-3x2-x的拐點坐標(biāo)為____。26.過點M0(1,-2,0)且與直線垂直的平面方程為______.27.28.設(shè)f(x)=x(x-1),則f'(1)=__________。29.30.設(shè)z=x2y+siny,=________。31.32.

33.已知∫01f(x)dx=π,則∫01dx∫01f(x)f(y)dy=________。

34.

35.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分

36.設(shè)函數(shù)f(x)=x-1/x,則f'(x)=________.

37.

38.

39.

40.三、計算題(20題)41.

42.43.將f(x)=e-2X展開為x的冪級數(shù).

44.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

45.證明:

46.

47.

48.49.求曲線在點(1,3)處的切線方程.50.

51.求微分方程y"-4y'+4y=e-2x的通解.

52.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.54.55.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

56.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.57.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.59.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則60.求微分方程的通解.四、解答題(10題)61.

62.設(shè)z=z(x,y)由x2+y3+2z=1確定,求

63.設(shè)z=z(x,y)是由F(x+mz,y+nz)=0確定的,其中F是可微函數(shù),m、n是

64.計算

65.

66.

67.

68.

69.

70.五、高等數(shù)學(xué)(0題)71.若在(a,b)內(nèi)f'(x)<0,f''(x)<0,則f(x)在(a,b)內(nèi)()。A.單減,凸B.單增,凹C.單減,凹D.單增,凸六、解答題(0題)72.

參考答案

1.C解析:建立共同愿景屬于學(xué)習(xí)型組織的管理觀念。

2.C

3.A

4.B解析:

5.B解析:

6.D由正項級數(shù)的比較判定法知,若un≤υn,則當(dāng)收斂時,也收斂;若也發(fā)散,但題設(shè)未交待un與υn的正負性,由此可分析此題選D。

7.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.

8.D

9.A本題考查的知識點為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時,兩平面平行;

當(dāng)時,兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。

10.D本題考查的知識點為牛頓一萊布尼茨公式和定積分的換元法。因此選D。

11.C

12.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。

13.B

14.C解析:平行溝通有助于同級部門或同級領(lǐng)導(dǎo)之間的溝通了解。

15.A

16.C本題考查的知識點為判定函數(shù)的單調(diào)性。

y=ln(1+x2)的定義域為(-∞,+∞)。

當(dāng)x>0時,y'>0,y為單調(diào)增加函數(shù),

當(dāng)x<0時,y'<0,y為單調(diào)減少函數(shù)。

可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。

17.D

18.A

19.D由所給二次積分可知區(qū)域D可以表示為0≤y≤l,y≤x≤1。其圖形如右圖中陰影部分.又可以表示為0≤x≤1,0≤y≤x。因此選D。

20.Dy=2x,y'=2xln2,dy=y'dx=2xln2dx,故選D。

21.33解析:

22.y=f(0)

23.

解析:

24.25.(1,-1)26.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識點為平面與直線的方程.

由題設(shè)條件可知應(yīng)該利用點法式方程來確定所求平面方程.

所給直線l的方向向量s=(3,-1,1).若所求平面π垂直于直線l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點法式方程可知

3(x-1)-[y-(-2)]+(z-0)=0,

即3(x-1)-(y+2)+z=0

為所求平面方程.

或?qū)憺?x-y+z-5=0.

上述兩個結(jié)果都正確,前者3(x-1)-(y+2)z=0稱為平面的點法式方程,而后者3x-y+z-5=0稱為平面的一般式方程.

27.

28.

29.-1本題考查了利用導(dǎo)數(shù)定義求極限的知識點。30.由于z=x2y+siny,可知。

31.

32.

33.π2因為∫01f(x)dx=π,所以∫01dx∫01(x)f(y)dy=∫01f(x)dx∫01f(y)dy=(∫01f(x)dx)2=π2。

34.(01]35.本題考查的知識點為計算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此

36.1+1/x2

37.

38.1+2ln2

39.

40.

本題考查的知識點為導(dǎo)數(shù)的四則運算.

41.

42.

43.

44.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

45.

46.

47.由一階線性微分方程通解公式有

48.49.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

50.

51.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

52.

53.由二重積分物理意義知

54.

55.

56.

57.

列表:

說明

58.函數(shù)的定義域為

注意

59.由等價無窮小量的定義可知

60.

61.

62.本題考查的知識點為求二元隱函數(shù)的偏導(dǎo)數(shù).

若z=z(x,y)由方程F(x,y,z)=0確定,求z對x,y的偏導(dǎo)數(shù)通常有兩種方法:

一是利用偏導(dǎo)數(shù)公式,當(dāng)需注意F'x,F(xiàn)'yF'z分別表示F(x,y,z)對x,y,z的偏導(dǎo)數(shù).上面式F(z,y,z)中將z,y,z三者同等對待,各看做是獨立變元.

二是將F(x,y,z)=0兩端關(guān)于x求偏導(dǎo)數(shù),將z=z(x,y)看作為中間變量,可以解出同理將F(x,y,z)=0兩端關(guān)于y求偏導(dǎo)數(shù),將z=z(x,y)看作中間變量,可以解出

63.解

64.本題考查的知識點為定積分的換元積分法.

比較典型的錯誤是利用換元計算時,一些考生忘記將積分限也隨之變化.

65.

66.

67.68.解法1原式(兩次利用洛必達法則)解法2原式(利用等價無窮小代換)本題考查的知識點為用洛必達法則求極限.

由于問題為“∞-∞”型極限問題,應(yīng)先將求極限的函數(shù)通分,使所求極限化為“”型問題.

如果將上式右端直接利用洛必達法則求之,則運算復(fù)雜.注意到使用洛必達法則求極限時,如果能與等價無窮小代換相結(jié)合,則問題常能得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論