福州市2020年5月高三綜合質(zhì)量數(shù)學(xué)理科試題含答案_第1頁
福州市2020年5月高三綜合質(zhì)量數(shù)學(xué)理科試題含答案_第2頁
福州市2020年5月高三綜合質(zhì)量數(shù)學(xué)理科試題含答案_第3頁
福州市2020年5月高三綜合質(zhì)量數(shù)學(xué)理科試題含答案_第4頁
福州市2020年5月高三綜合質(zhì)量數(shù)學(xué)理科試題含答案_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

R精品資料R市測(卷間120分;分150分)本試卷分第Ⅰ卷和第Ⅱ卷兩部分.第Ⅰ卷1至頁第Ⅱ卷3至4頁,滿分分考注:

答題前,考生務(wù)必將自己的準(zhǔn)考證號、姓名填寫在答題卡上.考生要認(rèn)真核對答題卡上粘貼的條形碼的“準(zhǔn)考證號、姓名、考試科目”與考生本人準(zhǔn)考證號、姓名是否一致.第Ⅰ卷每小題選出答案后鉛把答題卡上對應(yīng)題目的答案標(biāo)號涂黑需改動用橡皮擦干凈后再選涂其他答案號Ⅱ卷用毫的黑色墨水簽字筆在答題卡上書寫作答.若在試題卷上作答,答案無效.考試結(jié)束,監(jiān)考員將試題卷和答題卡一并收回.第Ⅰ卷一、選擇題:本大題共12小,每小題5分,共分.在每小題給出四個選項中,只有一項是符合題目要求的.、已知全集為,集合MNx|x23},MI()(A){1,1,2}(B{1,2}(C{4}()、復(fù)數(shù)滿(1|,復(fù)數(shù)共軛復(fù)數(shù)在復(fù)平面內(nèi)的對應(yīng)點位于(A)第一象限(B)第二象限(C第三象限()第四象限π、函數(shù)f(x)sin(xA)x處得最小值,則π(A)f(x)是函數(shù)(B)f()偶函數(shù)3ππ(C)f(x)是函數(shù)(Df(x)是函3rr4、ABC,AB,,AB(A)

(B

(C)2

(D)、已知某工程在很大程度上受當(dāng)?shù)啬杲邓康挠绊?,施工期間的年降水量X單位:mm)對工期延誤天數(shù)的響及相應(yīng)的概率P如表所示:降水量X工期延誤天數(shù)

?200300…3001530概率

0.3在降水量X至是00條件下,工期延誤不超過5天概率為(A)

(B

(C)

(D)0.50,、若y足約束條件y…且標(biāo)函數(shù)得最大值的點有無數(shù)個,則z

的最小

…0,值等于

1精品資料1(A)

(B

32(C)

()

、執(zhí)行右面的程序框圖,若輸入n值為4則輸出的結(jié)果為(A)(C)

(B)21()、的展開式中,

的系數(shù)為(A)(C)

(B)60()120、正項等比數(shù)列{a}滿

a128,下列結(jié)正確的是(A)*,a

B

*

(C)*,S

()N*,

、雙曲線E:

xa的、右焦點分別為FF,PEa左支上一點,F(xiàn),線與x

y

a

相切,則離心率為(A)

(B

(C)

53

(D)

2311、一個三棱錐的三視圖如圖所示,則該三棱錐的體積等于(A)2

(B

43

(C)

43

()

、設(shè)R,數(shù)f(x))

.若存在使

1f()成立,則(A)

15

(B

(C)

35

(D)

第Ⅱ卷本卷包括必考題和選考題兩部分.第13)題~)為考題,每個試題考生都必須做答.第(22~第()題為選考,考生根據(jù)要求做.二、填空題:本大題題,每小題5分,共分.把答案填在答題卡相應(yīng)位置、知函數(shù)f(x)

xx剟x0.

若g

.、所有棱長均為的四棱錐的外接球的表面積等于.

、拋物線C:y

精品資料x的線與x軸于點M,焦點F作傾斜角為60線C于,點,則AMB=.、數(shù)列{}的項為.知a,S

,S________三、解答題:解答應(yīng)寫出文字說、證明過程或演算步驟.小題滿分12分)tanA2cABC的角C所對的邊分別為,,知tan

.(Ⅰ)求;(Ⅱ)若BC邊的中線AM2,高線3,的積.小題滿分12分)為了研究某學(xué)科成績是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高三年級抽取了名生和名生的該學(xué)科成績,得到如下所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定分以上為優(yōu)(含80分.(Ⅰ)請根據(jù)圖示,將2聯(lián)表補(bǔ)充完整;優(yōu)分

非優(yōu)分

總計男生女生總計50(ii)據(jù)此列聯(lián)表判,能否在犯錯誤概率不超過10%前提下認(rèn)“學(xué)科成績與性別有?(Ⅱ)將頻率視作概率,從高三年級該學(xué)科成績中任意抽取3名生的成績,求至少2名生的成績?yōu)閮?yōu)分的概率.附:P

k

k

K

n()()()()(b)

.小題滿分12分)如圖所示,四棱錐ABCD的面是梯,且AB//CD,CDAD.(Ⅰ)求證:CE面

AB平面PADEPB點,(Ⅱ)若CE3,,求直線與面PDC所角大?。?/p>

小題滿分12分)

精品資料在平面直角坐標(biāo)系中已知點B坐標(biāo)分別為相交于點,且它們的斜率之積是

14

.記點軌跡為.(Ⅰ)求的程;(Ⅱ知線AP,分別交直線l:于M,跡在點P處切線與線段MN交點,求

MQ

的值.小題滿分12分)已知a,數(shù)f(x的圖象與軸切.(Ⅰ)求f()的調(diào)區(qū)間;(Ⅱ)當(dāng)x時f)(x,實數(shù)m的值圍.請考生在第()三題中任一題做答,如果多做,則按所做的第一題計分,做答時請寫清題號.小題滿分10分)選修4-1幾何證明選講如圖所示,ABC內(nèi)于圓OD是BAC的點,∠BAC平分線分別交和圓O于EF.(Ⅰ)求證:是外接圓的切線;

D

A(Ⅱ)若,DB

2

的值.

BE

CF小題滿分10分)選修4-4坐標(biāo)系與參數(shù)方程2在直角坐標(biāo)系xOy中曲C的數(shù)方程為(參數(shù)為點,軸半軸y2sin為極軸,并取相同的單位長度建立極坐標(biāo)系.(Ⅰ)寫出C的坐標(biāo)方程;1,(Ⅱ)設(shè)曲線:經(jīng)伸縮變換2C交于,兩,求.

π后得到曲線,線(3

)別與和小題滿分10分)選修4-5不等式選講已知不等式xx的解集為{}.(Ⅰ)求的值;(Ⅱ)設(shè)關(guān)于的程x(t)解,求實數(shù)t的.t福州市普通高中畢業(yè)班綜合質(zhì)量檢測

精品資料評分說明:.本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標(biāo)準(zhǔn)制定相應(yīng)的評分細(xì)則..對計算題,當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯誤,就不再給分..解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù)..只給整數(shù)分?jǐn)?shù).選擇題和填空題不給中間分.一、選擇題:本大題考查基礎(chǔ)知和基本運算.每小題分,滿分分.(1)A(2D(3B()(5D()(7)C()D(9C()(11)A()B二、填空題:本大題考查基礎(chǔ)知和基本運算.每小題分,滿分分.(13(14π()4)198三、解答題:本大題共小,共70分解答應(yīng)寫出文字說明、證明過程或演算步驟.(17)本小題主要考查正弦定理、余弦定理、三角形面公式及三角恒等變換等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想等.滿分分.解:(Ⅰ)因為1

tanAccosB2sinC,以1tanbBB

,······················2sin(AB)2sin即,AsinB因為sin()sinC,sinB,所以cos,·················································································4分π又因為Aπ),以.·····························································(Ⅱ)由M是BC中,得AM(AB),rr即AM(ABAB),所以,①·····································································1由SAHABA,2得

32

3,bca,····························································9分又根據(jù)余弦定理,有

,③··············································10分聯(lián)立①②③,得()

bc,解得bc.1所以△的面積sin3.·············································12分2(18本小題主要考查頻率分布直方圖、莖葉圖、次立重復(fù)試驗獨立性檢驗等基礎(chǔ)知識,考查運算求解能力、數(shù)據(jù)處理能力、應(yīng)用意識,考查必然與或然思想、化歸與轉(zhuǎn)化思想.滿分1分.解:(Ⅰ)根據(jù)圖示,將×2列表補(bǔ)充完整下:

精品資料男生女生

優(yōu)分

非優(yōu)分

總計總計203050·····································································································假設(shè)H:學(xué)科成績與性別無關(guān),n(K的測(ac)()(b)3020因為3.125,以能在犯錯誤概率不超過10%的提下認(rèn)為該學(xué)科成績與性別有關(guān).··············································································································(Ⅱ)由于有較大的把握認(rèn)為該學(xué)科成績與性別有關(guān),因此需要將男女生成績的優(yōu)分頻率f0.4作概率.···············································································設(shè)從高三年級中任意抽取名生的該學(xué)科成績中,優(yōu)分人數(shù)為,X服二項分布(3,0.4),·······························································································所求概率P(2)(

0.4

0.6

···································································································12分(19本小題主要考查空間直線與直線線與平面的位置關(guān)系及直線與平面所成的角等基礎(chǔ)知識,考查空間想象能力、推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想等.滿分2分(Ⅰ)證明:取的中點F,結(jié)DF,如圖所示.因為PD,所以DFAP.···························································1分因為面PAD,DF平面,所以DF.又因為API,所以DF面.········································································因為點是點,AB所以EF//AB,且EF.······························································又因為//CD,CD,2所以EF//CD,且,所以四邊形平行四邊形,所以CE//,以面PAB.···················································(Ⅱ)解:設(shè)點,G分為,的點,連結(jié),//,因為面PAD,平PAD,所以AD,以O(shè)G··························································因為由(Ⅰ)知,DF又因為AB,以AD,所以AP2

DF

所以APD為三角形,所以PO,因為面PAD,PO面PAD,所以ABPO.又因為ADI,所以面ABCD.·········································8分故,,兩垂直,可以點O為點,分別以O(shè)P的向為xy,z軸正方向,

3則所以2xy4,xx精品資料3則所以2xy4,xx建立空間直角坐標(biāo)系O,圖所示.1P(0,0,3),C(1,2,0),(1,0,0),E(,2,),22r所以PD,PC,)···················9分2設(shè)平面PDC的向量nx),rr取,n3,0,1),································································10設(shè)EC與平面所的角為,則

rcosnEC

3|,···················································11分3因為

ππ],以,π所以平面所角的大小為.············································分6(20本小題考查橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查數(shù)形結(jié)合思想、函數(shù)與方程思想、分類與整合思想等.滿分1分.解法一:(Ⅰ)設(shè)點P坐為直線的率

k

yx

(;y直線的斜率k()··························································x

由已知有

y(x,······················································x4

x化簡得點的跡方程為y4

(.·····································

(注:沒寫或)(Ⅱ)設(shè)

y

x

x),則4

y

.···········································

6直線的程為y,,得點M縱標(biāo)為;·····6分2直線的方程為y,,點N縱坐標(biāo)為y;······設(shè)在點處切線方程為y由得x2kxykx.·············8分000由,64kx整理得y

kxy

k

.將y得4x所以切線方程為yx.4y

,得

xk,9分4y

Mx,2xy4,xxxMx,2xy4,xxx令得點Q縱標(biāo)y

xy

yx1.yyy···········································································································r設(shè)MQ,以y,所以所以

yy······················································x2y.將y

x4

x代入上式,2

)

,解得

.···········································································分解法二:(Ⅰ)同解法一.(Ⅱ)設(shè)Py

x),則4

y

.···········································6直線的程為y,x,點縱坐標(biāo)為y;·····x2直線的方程為y,,點N縱坐標(biāo)為y;······設(shè)在點P處的切線方程為yy由得x2kkx.·············8分000由,64kx整理得y

kxyxk.將y得,得,4yx所以切線方程為yx.4y4x1令x得點Q縱標(biāo)為yy.4y4y···········································································································所以y

yy8xx

y

y

,············11分所以為線段MN的點,即

MQ

.······················································12分(21本小題主要考查導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)及其應(yīng)用、不等式等基礎(chǔ)知識,考查推理論證能力、運算求解能力、創(chuàng)新意識等,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想、分類與整合思想、數(shù)形合思想等.滿分12分解:(Ⅰ)

,設(shè)切點為,0),·················································1分依題意,

f()0,f)0,

0,

??精品資料??解得

a

························································································3分所以f

.當(dāng)時,f,f故間,調(diào)遞增區(qū)間為·························5分(Ⅱ)令(x)f()(xx,.則(lnx),令h()g

,h

1(),···············································xx1(?。┤鬽?,21因為當(dāng)時,e,(),所以xx

,所以h()即

在(1,單調(diào)遞增.又因為

所以當(dāng)x時g

,從而g(x)在[1,單遞增,而(1),以g(x),f(x(成.·······························1(ⅱ)若,2可得

1)在單遞增.xx1因為hm,hm{},1m[1ln(2m2所以存在(1,1,得),且當(dāng))時,以hx即在(1,)單調(diào)遞減,又因為,以當(dāng))時g,從而g(x)在x)上調(diào)遞減,而(1),以當(dāng)x(1,x)時(x,即f(xm成立.1縱上所述,的值范圍是(]·····················································分2請生第)()()中選題答如多,按做第一計,答請寫題.(22選修4:何證明選講本小題主要考查圓周角定理、相似三角形的判定與性質(zhì)、切割線定理等基礎(chǔ)知識,考查推理論證能力、運算求解能力等,考查化歸與轉(zhuǎn)化思想等.滿分分解:(Ⅰ)設(shè)外接圓的圓心為交點連結(jié),則BEGBAEBGE.因為AF平分∠BAC,以BFFC,以FBE,·······················所以FBEEBG所以,以是ABE外接圓的切線.······································(Ⅱ)連接DF,則BC,以DF是O的徑,

G因為BD

,DA

,

D

所以BD

DA

AF

.································································7分

O'因為AF平分∠BAC,以ABF∽AEC,

O

F

(Ⅱ)因為x…(Ⅱ)因為x…所以

ABAFAE

,所以ABAFEF)因為FBE,以FBE∽FAB,而,所以AB

BF

,所以BD

DA

AB.·····························································10分(23選修

;坐標(biāo)系與參數(shù)方程本小題考查極坐標(biāo)方程和參數(shù)方程、伸縮變換等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想等.滿分10分2解:(Ⅰ)將消去參數(shù),化為普通方程為2)y2sin

y

,即C:yx,···············································································2分將

xy

代入:xy,4cos

···

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論