2022-2023學年黑龍江省齊齊哈爾市普通高校對口單招數(shù)學自考測試卷(含答案)_第1頁
2022-2023學年黑龍江省齊齊哈爾市普通高校對口單招數(shù)學自考測試卷(含答案)_第2頁
2022-2023學年黑龍江省齊齊哈爾市普通高校對口單招數(shù)學自考測試卷(含答案)_第3頁
2022-2023學年黑龍江省齊齊哈爾市普通高校對口單招數(shù)學自考測試卷(含答案)_第4頁
2022-2023學年黑龍江省齊齊哈爾市普通高校對口單招數(shù)學自考測試卷(含答案)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年黑龍江省齊齊哈爾市普通高校對口單招數(shù)學自考測試卷(含答案)學校:________班級:________姓名:________考號:________

一、單選題(10題)1.設a>b,c>d則()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be

2.下列函數(shù)是奇函數(shù)的是A.y=x+3

B.C.D.

3.已知全集U={1,2,3,4,5},集合A={1,2,5},={1,3,5},則A∩B=()A.{5}B.{2}C.{1,2,4,5}D.{3,4,5}

4.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(-∞,0)上單調(diào)遞增的是()A.f(x)=1/x2

B.f(x)=x2+1

C.f(x)=x3

D.f(x)-2-x

5.設集合A={1,3,5,7},B={x|2≤x≤5},則A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}

6.設集合A={x|1≤x≤5},Z為整數(shù)集,則集合A∩Z中元素的個數(shù)是()A.6B.5C.4D.3

7.不等式4-x2<0的解集為()A.(2,+∞)B.(-∞,2)C.(-2,2)D.(―∞,一2)∪(2,+∞)

8.函數(shù)y=f(x)存在反函數(shù),若f(2)=-3,則函數(shù)y=f-1(x)的圖像經(jīng)過點()A.(-3,2)B.(1,3)C.(-2,2)D.(-3,3)

9.已知互相垂直的平面α,β交于直線l若直線m,n滿足m⊥a,n⊥β則()A.m//LB.m//nC.n⊥LD.m⊥n

10.x2-3x-4<0的等價命題是()A.x<-1或x>4B.-1<x<4C.x<-4或x>1D.-4<x<1

二、填空題(10題)11.有一長為16m的籬笆要圍成一個矩形場地,則矩形場地的最大面積是________m2.

12.

13.

14.要使的定義域為一切實數(shù),則k的取值范圍_____.

15.在銳角三角形ABC中,BC=1,B=2A,則=_____.

16.

17.

18.的展開式中,x6的系數(shù)是_____.

19.從某校隨機抽取100名男生,其身高的頻率分布直方圖如下,則身高在[166,182]內(nèi)的人數(shù)為____.

20.從含有質(zhì)地均勻且大小相同的2個紅球、N個白球的口袋中取出一球,若取到紅球的概率為2/5,則取得白球的概率等于______.

三、計算題(5題)21.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。

22.解不等式4<|1-3x|<7

23.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

24.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.

25.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

四、簡答題(10題)26.設拋物線y2=4x與直線y=2x+b相交A,B于兩點,弦AB長,求b的值

27.已知cos=,,求cos的值.

28.化簡a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)

29.在等差數(shù)列中,已知a1,a4是方程x2-10x+16=0的兩個根,且a4>a1,求S8的值

30.已知函數(shù):,求x的取值范圍。

31.已知函數(shù)(1)求函數(shù)f(x)的最小正周期及最值(2)令判斷函數(shù)g(x)的奇偶性,并說明理由

32.證明上是增函數(shù)

33.求到兩定點A(-2,0)(1,0)的距離比等于2的點的軌跡方程

34.求經(jīng)過點P(2,-3)且橫縱截距相等的直線方程

35.三個數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。

五、解答題(10題)36.如圖,ABCD-A1B1C1D1為長方體.(1)求證:B1D1//平面BC1D;(2)若BC=CC1,,求直線BC1與平面ABCD所成角的大小.

37.

38.如圖,在正方體ABCD-A1B1C1D1中,S是B1D1的中點,E,F(xiàn),G分別是BC,DC,SC的中點,求證:(1)直線EG//平面BDD1B1;(2)平面EFG//平面BDD1B1

39.如圖,在四棱錐P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求證:DC丄平面PAC;(2)求證:平面PAB丄平面PAC.

40.

41.已知A,B分別是橢圓的左右兩個焦點,o為坐標的原點,點P(-1,)在橢圓上,線段PB與y軸的焦點M為線段PB的中心點,求橢圓的標準方程

42.

43.已知函數(shù)(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[0,2π/3]上的最小值.

44.

45.已知橢圓C:x2/a2+y2/b2=1(a>b>0)的離心率為,其中左焦點F(-2,0).(1)求橢圓C的方程;(2)若直線:y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓:x2+y2=l上,求m的值.

六、單選題(0題)46.若函數(shù)y=log2(x+a)的反函數(shù)的圖像經(jīng)過點P(-1,0),則a的值為()A.-2

B.2

C.

D.

參考答案

1.B不等式的性質(zhì)。由不等式性質(zhì)得B正確.

2.C

3.B集合的運算.由CuB={1,3,5}得B={2,4},故A∩B={2}.

4.A函數(shù)的奇偶性,單調(diào)性.因為:y=x2在(-∞,0)上是單調(diào)遞減的,故y=1/x2在(-∞,0)上是單調(diào)遞增的,又y=1/x2為偶函數(shù),故A對;y=x2+1在(-∞,0)上是單調(diào)遞減的,故B錯;y=x3為奇函數(shù),故C錯;y=2-x為非奇非偶函數(shù),故D錯.

5.B集合的運算.由A={1,3,5,7},B={x|2≤x≤5},得A∩B={3,5}

6.B集合的運算.∵A={x|1≤x≤5},Z為整數(shù)集,則A∩Z={1,2,3,4,5}.

7.D不等式的計算.4-x2<0,x2-4>0即(x-2)(x+2)>0,x>2或x<-2.

8.A由反函數(shù)定義可知,其圖像過點(-3,2).

9.C直線與平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因為n⊥β,所以n⊥L.

10.B

11.16.將實際問題求最值的問題轉(zhuǎn)化為二次函數(shù)在某個區(qū)間上的最值問題.設矩形的長為xm,則寬為:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.

12.①③④

13.16

14.-1≤k<3

15.2

16.λ=1,μ=4

17.{x|0<x<1/3}

18.1890,

19.64,在[166,182]區(qū)間的身高頻率為(0.050+0.030)×8(組距)=0.64,因此人數(shù)為100×0.64=64。

20.3/5古典概型的概率公式.由題可得,取出紅球的概率為2/2+n=2/5,所以n=3,即白球個數(shù)為3,取出白球的概率為3/5.

21.

22.

23.

24.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

25.

26.由已知得整理得(2x+m)2=4x即∴再根據(jù)兩點間距離公式得

27.

28.原式=

29.方程的兩個根為2和8,又∴又∵a4=a1+3d,∴d=2∵。

30.

X>4

31.(1)(2)∴又∴函數(shù)是偶函數(shù)

32.證明:任取且x1<x2∴即∴在是增函數(shù)

33.

34.設所求直線方程為y=kx+b由題意可知-3=2k+b,b=解得,時,b=0或k=-1時,b=-1∴所求直線為

35.由已知得:由上可解得

36.(1)ABCD-A1B1C1D1為長方體,所以B1D1//BD,又BD包含于平面BC1D,B1D1不包含BC1D,所以B1D1//平面BC1D(2)因為ABCD-A1B1C1D1為長方體,CC1⊥平面ABCD,所以BC為BC1在平面ABCD內(nèi)的射影,所以角C1BC為與ABCD夾角,在Rt△C1BC,BC=CC1所以角C1BC=45°,所以直線BC1與平面ABCD所成角的大小為45°.

37.

38.證明⑴連接SB,所以E,G分別是BC,SC的中點,所以EG//SB又因為SB包含于平面BDD1B1私,EG不包含于平面BDD1B1,所以直線EG//平面BDD1D1

39.(1)∵PC丄平面ABCD,DC包含于平面ABCD,∴PC丄DC.又AC丄DC,PC∩AC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論