




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年黑龍江省齊齊哈爾市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.設(shè)f(x)在點x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點x0必定可導(dǎo)
B.f(x)在點x0必定不可導(dǎo)
C.
D.
3.以下結(jié)論正確的是().
A.
B.
C.
D.
4.∫sin5xdx等于().
A.A.
B.
C.
D.
5.微分方程y"-y=ex的一個特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex
B.axex
C.aex+bx
D.axex+bx
6.
7.設(shè)z=tan(xy),則等于()A.A.
B.
C.
D.
8.若y(x-1)=x2-1,則y'(x)等于()A.2x+2B.x(x+1)C.x(x-1)D.2x-1
9.平衡積分卡控制是()首創(chuàng)的。
A.戴明B.施樂公司C.卡普蘭和諾頓D.國際標準化組織
10.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
11.A.A.
B.
C.
D.
12.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面
13.A.A.4B.3C.2D.1
14.A.A.4B.-4C.2D.-2
15.過點(0,2,4)且平行于平面x+2x=1,y-3x=2的直線方程為
A.x/1=(y-2)/0=(z-4)/-3.
B.x/0=(y-2)/1=(z-4)/-3
C.x/-2=(y-2)/3=(z-4)/1
D.-2x+3(y-2)+z-4=0
16.設(shè)函數(shù)在x=0處連續(xù),則a等于().A.A.0B.1/2C.1D.2
17.
18.若x0為f(x)的極值點,則().A.A.f'(x0)必定存在,且f'(x0)=0
B.f'(x0)必定存在,但f'(x0)不一定等于零
C.f'(x0)不存在或f'(x0)=0
D.f'(x0)必定不存在
19.
20.下列關(guān)系正確的是()。A.
B.
C.
D.
二、填空題(20題)21.
22.過點(1,-1,0)且與直線平行的直線方程為______。23.
24.
25.26.過坐標原點且與平面2x-y+z+1=0平行的平面方程為______.
27.設(shè)y=f(x)可導(dǎo),點xo=2為f(x)的極小值點,且f(2)=3.則曲線y=f(x)在點(2,3)處的切線方程為__________.
28.
29.
30.
31.設(shè)z=x2y+siny,=________。
32.
33.34.
35.
36.
37.
38.
39.設(shè)f(x)=x(x-1),貝f'(1)=_________.
40.設(shè)f(x,y)=x+(y-1)arcsinx,則f'x(x,1)=__________。
三、計算題(20題)41.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.43.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.44.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.45.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
46.將f(x)=e-2X展開為x的冪級數(shù).47.求微分方程的通解.
48.
49.求曲線在點(1,3)處的切線方程.50.證明:51.52.當x一0時f(x)與sin2x是等價無窮小量,則53.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.54.
55.
56.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
57.58.
59.求微分方程y"-4y'+4y=e-2x的通解.
60.
四、解答題(10題)61.
62.
63.
64.判定曲線y=3x3-4x2-x+1的凹向.
65.
66.67.求,其中D為y=x-4,y2=2x所圍成的區(qū)域。
68.
69.設(shè)區(qū)域D由x2+y2≤1,x≥0,y≥0所圍成.求70.設(shè)五、高等數(shù)學(xué)(0題)71.
且k≠0則k=________。
六、解答題(0題)72.
參考答案
1.C解析:
2.C本題考查的知識點為極限、連續(xù)與可導(dǎo)性的關(guān)系.
這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.
3.C
4.A本題考查的知識點為不定積分的換元積分法.
,可知應(yīng)選D.
5.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。
方程y"-y=ex中自由項f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。
6.A
7.B本題考查的知識點為偏導(dǎo)數(shù)運算.
由于z=tan(xy),因此
可知應(yīng)選A.
8.A因f(x-1)=x2-1,故f(x)=(x+1)2-1=x2+2x,則f'(x)=2x+2.
9.C
10.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
11.D本題考查的知識點為可變上限積分的求導(dǎo).
當f(x)為連續(xù)函數(shù),φ(x)為可導(dǎo)函數(shù)時,
因此應(yīng)選D.
12.C本題考查了二次曲面的知識點。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
13.C
14.D
15.C本題考查了直線方程的知識點.
16.C本題考查的知識點為函數(shù)連續(xù)性的概念.
由函數(shù)連續(xù)性的定義可知,若f(x)在x=0處連續(xù),則有,由題設(shè)f(0)=a,
可知應(yīng)有a=1,故應(yīng)選C.
17.A
18.C本題考查的知識點為函數(shù)極值點的性質(zhì).
若x0為函數(shù)y=f(x)的極值點,則可能出現(xiàn)兩種情形:
(1)f(x)在點x0處不可導(dǎo),如y=|x|,在點x0=0處f(x)不可導(dǎo),但是點x0=0為f(a)=|x|的極值點.
(2)f(x)在點x0可導(dǎo),則由極值的必要條件可知,必定有f'(x0)=0.
從題目的選項可知應(yīng)選C.
本題常見的錯誤是選A.其原因是考生將極值的必要條件:“若f(x)在點x0可導(dǎo),且x0為f(x)的極值點,則必有f'(x0)=0”認為是極值的充分必要條件.
19.D
20.B由不定積分的性質(zhì)可知,故選B.
21.22.本題考查的知識點為直線的方程和直線與直線的關(guān)系。由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點向式方程可知所求直線方程為
23.由可變上限積分求導(dǎo)公式可知
24.ee解析:
25.本題考查的知識點為連續(xù)性與極限的關(guān)系.
由于為初等函數(shù),定義域為(-∞,0),(0,+∞),點x=2為其定義區(qū)間(0,+∞)內(nèi)的點,從而知
26.已知平面的法線向量n1=(2,-1,1),所求平面與已知平面平行,可設(shè)所求平面方程為2x-y+z+D=0,將x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程為2x-y+z=0.
27.
28.
29.
30.231.由于z=x2y+siny,可知。
32.eab33.1
34.答案:1
35.7/5
36.
37.x
38.e1/2e1/2
解析:
39.1
40.1
41.
42.函數(shù)的定義域為
注意
43.
44.由二重積分物理意義知
45.
46.
47.
48.
49.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
50.
51.
52.由等價無窮小量的定義可知
53.
列表:
說明
54.由一階線性微分方程通解公式有
55.
則
56.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
57.
58.
59.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
60.
61.
6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深海探險起點:船舶租賃合同揭秘
- 飛行員培訓(xùn)合同合作意向范本
- 車險代理合同書樣本
- 企業(yè)員工培訓(xùn)合作協(xié)議合同
- 股權(quán)激勵實施合同協(xié)議
- 施工領(lǐng)域農(nóng)民工勞動合同模板
- 汽車購銷合同其一:條款解析
- 小學(xué)生心理課件
- 無線廣播電視傳輸中的信號傳輸信道分配考核試卷
- 天然氣儲層滲透性改善技術(shù)考核試卷
- 2024年甘肅天水麥積山石窟藝術(shù)研究所招聘工作人員考試真題
- 2025年山東省榮成市屬事業(yè)單位招聘崗位及歷年高頻重點模擬試卷提升(共500題附帶答案詳解)
- 火星表面材料分析-深度研究
- 《職業(yè)技能等級評價規(guī)范編制指南編制說明》
- 《教育強國建設(shè)規(guī)劃綱要(2024-2035年)》解讀講座
- 畜禽養(yǎng)殖場惡臭污染物排放及其處理技術(shù)研究進展
- 超聲內(nèi)鏡引導(dǎo)下穿刺活檢術(shù)的配合及護理
- 新生兒常見的產(chǎn)傷及護理
- 代寫回憶錄合同
- 2024年10月自考00149國際貿(mào)易理論與實務(wù)試題及答案
- 天耀中華合唱簡譜大劇院版
評論
0/150
提交評論