2022-2023學(xué)年陜西省咸陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年陜西省咸陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年陜西省咸陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年陜西省咸陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年陜西省咸陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年陜西省咸陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。

A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)

2.∫-11(3x2+sin5x)dx=()。A.-2B.-1C.1D.2

3.

4.滑輪半徑r=0.2m,可繞水平軸O轉(zhuǎn)動(dòng),輪緣上纏有不可伸長(zhǎng)的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動(dòng)規(guī)律φ=0.15t3rad,其中t單位為s,當(dāng)t=2s時(shí),輪緣上M點(diǎn)的速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。

A.M點(diǎn)的速度為vM=0.36m/s

B.M點(diǎn)的加速度為aM=0.648m/s2

C.物體A的速度為vA=0.36m/s

D.物體A的加速度為aA=0.36m/s2

5.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0

B.

C.

D.π

6.

7.

8.設(shè)函數(shù)f(x)=(x-1)(x-2)(x-3),則方程f(x)=0有()。A.一個(gè)實(shí)根B.兩個(gè)實(shí)根C.三個(gè)實(shí)根D.無(wú)實(shí)根

9.

A.(-2,2)

B.(-∞,0)

C.(0,+∞)

D.(-∞,+∞)

10.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)

11.下列關(guān)系正確的是()。A.

B.

C.

D.

12.

13.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)

14.

15.

16.設(shè)等于()A.A.-1B.1C.-cos1D.1-cos1

17.

18.設(shè)y=2x3,則dy=()

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

19.A.沒(méi)有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

20.

二、填空題(20題)21.

22.y=lnx,則dy=__________。

23.

24.

25.

26.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則x2dxdy化為極坐標(biāo)系下的二重積分的表達(dá)式為_(kāi)_______。

27.

28.

29.30.

31.

32.函數(shù)f(x)=2x2+4x+2的極小值點(diǎn)為x=_________。

33.

34.35.

36.

37.

38.

39.

40.

三、計(jì)算題(20題)41.42.求微分方程的通解.43.44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.45.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.46.

47.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

48.求微分方程y"-4y'+4y=e-2x的通解.

49.

50.

51.

52.證明:53.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.54.55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

56.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

57.求曲線在點(diǎn)(1,3)處的切線方程.58.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.59.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).60.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則四、解答題(10題)61.62.求y=xlnx的極值與極值點(diǎn).

63.(本題滿分10分)

64.設(shè)

65.

66.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.67.68.

69.

70.五、高等數(shù)學(xué)(0題)71.分析

在x=0處的可導(dǎo)性

六、解答題(0題)72.將展開(kāi)為x的冪級(jí)數(shù).

參考答案

1.A

2.D

3.A

4.B

5.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。

6.C

7.C解析:

8.B

9.A

10.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來(lái)判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。

11.B由不定積分的性質(zhì)可知,故選B.

12.C

13.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。

14.C

15.C解析:

16.B本題考查的知識(shí)點(diǎn)為可變上限的積分.

由于,從而知

可知應(yīng)選B.

17.D

18.B

19.D

20.B

21.1/e1/e解析:

22.(1/x)dx

23.

24.

25.126.因?yàn)镈:x2+y2≤a2(a>0),y≥0,所以令且0≤r≤a,0≤0≤π,則=∫0πdθ∫0acos2θ.rdr=∫0πdθ∫0ar3cos2θdr。

27.11解析:

28.e1/2e1/2

解析:29.本題考查的知識(shí)點(diǎn)為重要極限公式。30.本題考查的知識(shí)點(diǎn)為求二元函數(shù)的全微分.

通常求二元函數(shù)的全微分的思路為:

31.1/2

32.-1

33.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

34.

35.

本題考查的知識(shí)點(diǎn)為重要極限公式.

36.2

37.

38.

39.1/3

40.(12)(01)

41.

42.

43.

44.函數(shù)的定義域?yàn)?/p>

注意

45.由二重積分物理意義知

46.

47.

48.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

49.由一階線性微分方程通解公式有

50.

51.

52.

53.

54.

55.

列表:

說(shuō)明

56.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%57.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

58.

59.60.由等價(jià)無(wú)窮小量的定義可知

61.62.y=x1nx的定義域?yàn)閤>0,

63.本題考查的知識(shí)點(diǎn)為求解二階線性常系數(shù)非齊次微分方程.

相應(yīng)的齊次微分方程為

代入原方程可得

原方程的通解為

【解題指導(dǎo)】

由二階線性常系數(shù)非齊次微分方程解的結(jié)構(gòu)定理可知,其通解y=相應(yīng)齊次方程的通解Y+非齊次方程的-個(gè)特解y*.

其中Y可以通過(guò)求解特征方程得特征根而求出.而y*可以利用待定系數(shù)法求解.

64.

65.66.由于直線2x-6y+1=0的斜率k=1/3,與其垂直的直線的斜率k1=-1/k=-3.對(duì)于y=x3+3x25,y'=3x2+6x.由題意應(yīng)有3x2+6x=-3,因此x2+2x+1=0,x=-1,此時(shí)y=(-1)3+3(-1)2-5=-3.即切點(diǎn)為(-1,-3).切線方程為y+3=-3(x+1),或?qū)憺?x+y+6=0.本題考查的知識(shí)點(diǎn)為求曲線的切線方程.

求曲線y=f(x,y)的切線方程,通常要找出切點(diǎn)及函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值.所給問(wèn)題沒(méi)有給出切點(diǎn),因此依已給條件找出切點(diǎn)是首要問(wèn)題.得出切點(diǎn)、切線的斜率后,可依直線的點(diǎn)斜式方程求出切線方程.

67.68.本題考查的知識(shí)點(diǎn)為參數(shù)方程的求導(dǎo)運(yùn)算.

【解題指導(dǎo)】

69.

70.

71.

在x=0處的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論