版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年江西省九江市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
A.
B.
C.
D.
3.滑輪半徑r=0.2m,可繞水平軸O轉(zhuǎn)動(dòng),輪緣上纏有不可伸長的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動(dòng)規(guī)律φ=0.15t3rad,其中t單位為s,當(dāng)t=2s時(shí),輪緣上M點(diǎn)的速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。
A.M點(diǎn)的速度為vM=0.36m/s
B.M點(diǎn)的加速度為aM=0.648m/s2
C.物體A的速度為vA=0.36m/s
D.物體A的加速度為aA=0.36m/s2
4.A.A.1
B.1/m2
C.m
D.m2
5.
6.()。A.e-6
B.e-2
C.e3
D.e6
7.
8.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
9.
10.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定11.設(shè)函數(shù)在x=0處連續(xù),則a等于().A.A.0B.1/2C.1D.2
12.談判是雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件()的過程。
A.達(dá)成協(xié)議B.爭(zhēng)取利益C.避免沖突D.不斷協(xié)商
13.在企業(yè)中,財(cái)務(wù)主管與財(cái)會(huì)人員之間的職權(quán)關(guān)系是()
A.直線職權(quán)關(guān)系B.參謀職權(quán)關(guān)系C.既是直線職權(quán)關(guān)系又是參謀職權(quán)關(guān)系D.沒有關(guān)系
14.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
15.
()A.x2
B.2x2
C.xD.2x
16.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()
A.力系平衡
B.力系有合力
C.力系的合力偶矩等于平行四邊形ABCD的面積
D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍
17.A.2x
B.3+2x
C.3
D.x2
18.
19.
20.設(shè)f(x)=x3+x,則等于()。A.0
B.8
C.
D.
二、填空題(20題)21.22.23.24.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為______.25.
26.
27.
28.
29.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為.30.31.=______.
32.
33.函數(shù)y=cosx在[0,2π]上滿足羅爾定理,則ξ=______.
34.
35.
36.
37.
38.
39.設(shè)z=x2y2+3x,則
40.
三、計(jì)算題(20題)41.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.42.43.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
45.求微分方程y"-4y'+4y=e-2x的通解.
46.證明:47.將f(x)=e-2X展開為x的冪級(jí)數(shù).48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
49.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
50.求微分方程的通解.51.求曲線在點(diǎn)(1,3)處的切線方程.52.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
53.
54.
55.56.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.57.58.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.59.
60.
四、解答題(10題)61.
62.將f(x)=e-2x展開為x的冪級(jí)數(shù),并指出其收斂區(qū)間。
63.
64.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.
65.
66.
67.
68.
69.計(jì)算
70.
五、高等數(shù)學(xué)(0題)71.由曲線y=ex,y=e及y軸圍成的圖形的面積。
六、解答題(0題)72.
參考答案
1.C
2.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知
可知應(yīng)選C.
3.B
4.D本題考查的知識(shí)點(diǎn)為重要極限公式或等價(jià)無窮小代換.
解法1由可知
解法2當(dāng)x→0時(shí),sinx~x,sinmx~mx,因此
5.A
6.A
7.D
8.D
9.B
10.C
11.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
由函數(shù)連續(xù)性的定義可知,若f(x)在x=0處連續(xù),則有,由題設(shè)f(0)=a,
可知應(yīng)有a=1,故應(yīng)選C.
12.A解析:談判是指雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件達(dá)成協(xié)議的過程。
13.A解析:直線職權(quán)是指管理者直接指導(dǎo)下屬工作的職權(quán)。財(cái)務(wù)主管與財(cái)會(huì)人員之間是直線職權(quán)關(guān)系。
14.C
15.A
16.D
17.A由導(dǎo)數(shù)的基本公式及四則運(yùn)算法則,有故選A.
18.A
19.B
20.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱性質(zhì)可知
可知應(yīng)選A。
21.x=-1
22.1/3本題考查了定積分的知識(shí)點(diǎn)。
23.24.y=f(1)本題考查的知識(shí)點(diǎn)有兩個(gè):一是導(dǎo)數(shù)的幾何意義,二是求切線方程.
設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過該點(diǎn)的切線方程為
y-f(x0)=f'(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為
y=f(1)=0.
本題中考生最常見的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為
y-f(x0)=f'(x)(x-x0)
而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為
y-f(1)=f'(x)(x-1).
本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為
y-1=0.
25.
26.
27.(-21)(-2,1)
28.y=-e-x+C29.y=f(1).
本題考查的知識(shí)點(diǎn)有兩個(gè):-是導(dǎo)數(shù)的幾何意義,二是求切線方程.
設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過該點(diǎn)的切線方程為
y-f(x0)=f(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f(x0)=0,故所求切線方程為
y—f(1)=0.
本題中考生最常見的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為
y-f(x0)=f(x)(x-x0)
而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為
y-f(1)=f(x)(x-1).
本例中由于f(x)為抽象函數(shù),-些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為
y-1=0.
30.
本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
注意此處冪級(jí)數(shù)為缺項(xiàng)情形.
31.本題考查的知識(shí)點(diǎn)為定積分的換元積分法。設(shè)t=x/2,則x=2t,dx=2dt.當(dāng)x=0時(shí),t=0;當(dāng)x=π時(shí),t=π/2。因此
32.π/2π/2解析:
33.π
34.(-∞2)
35.
36.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
37.
38.39.2xy(x+y)+3本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
由于z=x2y2+3x,可知
40.
41.
42.
43.由等價(jià)無窮小量的定義可知
44.
列表:
說明
45.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
46.
47.48.由二重積分物理意義知
49.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
50.51.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度貨車掛靠運(yùn)營車輛綠色通行費(fèi)合作協(xié)議
- 撤銷技術(shù)在信息安全中的應(yīng)用-深度研究
- 組織開展親子活動(dòng)方案
- 大氣污染治理與空氣質(zhì)量改善研究-深度研究
- 博物館展覽形式創(chuàng)新-深度研究
- 工業(yè)設(shè)計(jì)知識(shí)產(chǎn)權(quán)保護(hù)-深度研究
- 數(shù)據(jù)隱私保護(hù)-第28篇-深度研究
- 基于大數(shù)據(jù)的網(wǎng)絡(luò)安全風(fēng)險(xiǎn)分析-深度研究
- 心理疾病預(yù)測(cè)模型-深度研究
- 女性主義與網(wǎng)絡(luò)空間-深度研究
- 2025年溫州市城發(fā)集團(tuán)招聘筆試參考題庫含答案解析
- 2025年中小學(xué)春節(jié)安全教育主題班會(huì)課件
- 2025版高考物理復(fù)習(xí)知識(shí)清單
- 除數(shù)是兩位數(shù)的除法練習(xí)題(84道)
- 2025年度安全檢查計(jì)劃
- 2024年度工作總結(jié)與計(jì)劃標(biāo)準(zhǔn)版本(2篇)
- 全球半導(dǎo)體測(cè)試探針行業(yè)市場(chǎng)研究報(bào)告2024
- 反走私課件完整版本
- 2024年注冊(cè)計(jì)量師-一級(jí)注冊(cè)計(jì)量師考試近5年真題附答案
- 2023年四川省樂山市中考數(shù)學(xué)試卷
- 【可行性報(bào)告】2023年電動(dòng)自行車行業(yè)項(xiàng)目可行性分析報(bào)告
評(píng)論
0/150
提交評(píng)論