2022年內(nèi)蒙古自治區(qū)赤峰市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁
2022年內(nèi)蒙古自治區(qū)赤峰市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁
2022年內(nèi)蒙古自治區(qū)赤峰市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁
2022年內(nèi)蒙古自治區(qū)赤峰市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁
2022年內(nèi)蒙古自治區(qū)赤峰市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年內(nèi)蒙古自治區(qū)赤峰市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.設(shè)y=lnx,則y″等于().

A.1/x

B.1/x2

C.-1/x

D.-1/x2

3.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().

A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)

4.

5.A.0B.1C.2D.不存在

6.過點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().

A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

7.

8.設(shè)y=2x3,則dy=()

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

9.

10.

11.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x

B.(Ax+B)e2x

C.Ax2e2x

D.x(Ax+B)e2x

12.微分方程(y)2+(y)3+sinx=0的階數(shù)為

A.1B.2C.3D.413.下列命題正確的是()A.A.

B.

C.

D.

14.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

15.

16.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0

B.△<dy<0

C.dy>Ay>0

D.dy<△y<0

17.

18.

()A.x2

B.2x2

C.xD.2x

19.

20.設(shè)y=cos4x,則dy=()。A.

B.

C.

D.

二、填空題(20題)21.22.________.

23.

24.25.設(shè),則y'=______.

26.

27.

28.

29.

30.

31.

32.33.

34.微分方程y'=0的通解為__________。

35.

36.37.38.

39.

40.

三、計(jì)算題(20題)41.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.42.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).43.44.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

45.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.46.證明:

47.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

48.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.49.

50.

51.

52.

53.

54.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

55.求微分方程y"-4y'+4y=e-2x的通解.

56.求微分方程的通解.57.將f(x)=e-2X展開為x的冪級(jí)數(shù).58.59.求曲線在點(diǎn)(1,3)處的切線方程.60.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則四、解答題(10題)61.求微分方程y'-(1/x)y=-1的通解。

62.63.求方程(y-x2y)y'=x的通解.64.

65.

66.計(jì)算67.

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.設(shè)f(x),g(x)在[a,b]上連續(xù),則()。

A.若,則在[a,b]上f(x)=0

B.若,則在[a,b]上f(x)=g(x)

C.若a<c<d<b,則

D.若f(x)≤g(z),則

六、解答題(0題)72.

參考答案

1.A

2.D由于Y=lnx,可得知,因此選D.

3.C本題考查的知識(shí)點(diǎn)為極值的第-充分條件.

由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),

f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.

4.C

5.D本題考查的知識(shí)點(diǎn)為極限與左極限、右極限的關(guān)系.

由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.

6.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組

故選A.

7.B解析:

8.B

9.D

10.C

11.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:

若自由項(xiàng)f(x)=Pn(x)eαx,當(dāng)α不為特征根時(shí),可設(shè)特解為

y*=Qn(x)eαx,

Qn(x)為x的待定n次多項(xiàng)式.

當(dāng)α為單特征根時(shí),可設(shè)特解為

y*=xQn(x)eαx,

當(dāng)α為二重特征根時(shí),可設(shè)特解為

y*=x2Qn(x)eαx.

所給方程對(duì)應(yīng)齊次方程的特征方程為

r2-3r+2=0.

特征根為r1=1,r2=2.

自由項(xiàng)f(x)=xe2x,相當(dāng)于α=2為單特征根.又因?yàn)镻n(x)為一次式,因此應(yīng)選D.

12.B

13.D

14.A本題考查的知識(shí)點(diǎn)為無窮級(jí)數(shù)的收斂性。

15.D

16.B

17.B

18.A

19.D

20.B21.

22.

23.24.025.解析:本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.

26.(-22)

27.

28.

29.

30.

31.0

32.

33.

本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.

34.y=C

35.

36.本題考查了一元函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)37.138.F(sinx)+C

39.00解析:

40.

解析:

41.

42.

列表:

說明

43.

44.

45.由二重積分物理意義知

46.

47.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

48.

49.

50.

51.

52.

53.由一階線性微分方程通解公式有

54.函數(shù)的定義域?yàn)?/p>

注意

55.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

56.

57.

58.

59.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論