版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關系(用不等號連接)為()A. B.C. D.2.《易經(jīng)》包含著很多哲理,在信息學、天文學中都有廣泛的應用,《易經(jīng)》的博大精深,對今天的幾何學和其它學科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長為,陰陽太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.3.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內切 B.相交 C.外切 D.相離4.若滿足,且目標函數(shù)的最大值為2,則的最小值為()A.8 B.4 C. D.65.若函數(shù)在處取得極值2,則()A.-3 B.3 C.-2 D.26.已知函數(shù),且關于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍().A. B. C. D.7.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.8.已知橢圓(a>b>0)與雙曲線(a>0,b>0)的焦點相同,則雙曲線漸近線方程為()A. B.C. D.9.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或10.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.11.若集合,,則=()A. B. C. D.12.若的展開式中的系數(shù)之和為,則實數(shù)的值為()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩人下棋,兩人下成和棋的概率是,乙獲勝的概率是,則乙不輸?shù)母怕适莀____.14.函數(shù)的定義域是__________.15.已知關于的不等式對于任意恒成立,則實數(shù)的取值范圍為_________.16.已知橢圓的左、右焦點分別為、,過橢圓的右焦點作一條直線交橢圓于點、.則內切圓面積的最大值是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)已知是的一個極值點,求曲線在處的切線方程(Ⅱ)討論關于的方程根的個數(shù).18.(12分)已知函數(shù)(1)解不等式;(2)若函數(shù),若對于任意的,都存在,使得成立,求實數(shù)的取值范圍.19.(12分)在平面直角坐標系中,以原點為極點,x軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線C的極坐標方程為ρ=2cosθ,直線l的參數(shù)方程為(t為參數(shù),α為直線的傾斜角).(1)寫出直線l的普通方程和曲線C的直角坐標方程;(2)若直線l與曲線C有唯一的公共點,求角α的大?。?0.(12分)已知數(shù)列的各項均為正數(shù),為其前n項和,對于任意的滿足關系式.(1)求數(shù)列的通項公式;(2)設數(shù)列的通項公式是,前n項和為,求證:對于任意的正數(shù)n,總有.21.(12分)已知數(shù)列的通項,數(shù)列為等比數(shù)列,且,,成等差數(shù)列.(1)求數(shù)列的通項;(2)設,求數(shù)列的前項和.22.(10分)在四棱錐中,底面是平行四邊形,底面.(1)證明:;(2)求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】因為,所以,即周期為4,因為為奇函數(shù),所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調遞增,因為,因此,選A.點睛:函數(shù)對稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關于原點對稱);(2)函數(shù)關于點對稱,函數(shù)關于直線對稱,(3)函數(shù)周期為T,則2.B【解析】
由圖利用三角形的面積公式可得正八邊形中每個三角形的面積,再計算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個等腰三角形,頂角為,設三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎題.3.B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r4.A【解析】
作出可行域,由,可得.當直線過可行域內的點時,最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當直線過可行域內的點時,最大,即最大,最大值為2.解方程組,得..,當且僅當,即時,等號成立.的最小值為8.故選:.【點睛】本題考查簡單的線性規(guī)劃,考查基本不等式,屬于中檔題.5.A【解析】
對函數(shù)求導,可得,即可求出,進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數(shù)的導數(shù)與極值,考查了學生的運算求解能力,屬于基礎題.6.B【解析】
根據(jù)條件可知方程有且只有一個實根等價于函數(shù)的圖象與直線只有一個交點,作出圖象,數(shù)形結合即可.【詳解】解:因為條件等價于函數(shù)的圖象與直線只有一個交點,作出圖象如圖,由圖可知,,故選:B.【點睛】本題主要考查函數(shù)圖象與方程零點之間的關系,數(shù)形結合是關鍵,屬于基礎題.7.D【解析】
先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數(shù)列是單調遞增數(shù)列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調性求解參數(shù)范圍,難度一般.已知數(shù)列單調性,可根據(jù)之間的大小關系分析問題.8.A【解析】
由題意可得,即,代入雙曲線的漸近線方程可得答案.【詳解】依題意橢圓與雙曲線即的焦點相同,可得:,即,∴,可得,雙曲線的漸近線方程為:,故選:A.【點睛】本題考查橢圓和雙曲線的方程和性質,考查漸近線方程的求法,考查方程思想和運算能力,屬于基礎題.9.D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.10.D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.11.C【解析】試題分析:化簡集合故選C.考點:集合的運算.12.B【解析】
由,進而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點睛】本題考查二項式定理的應用,考查學生的計算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】乙不輸?shù)母怕蕿?,?14.【解析】由,得,所以,所以原函數(shù)定義域為,故答案為.15.【解析】
先將不等式對于任意恒成立,轉化為任意恒成立,設,求出在內的最小值,即可求出的取值范圍.【詳解】解:由題可知,不等式對于任意恒成立,即,又因為,,對任意恒成立,設,其中,由不等式,可得:,則,當時等號成立,又因為在內有解,,則,即:,所以實數(shù)的取值范圍:.故答案為:.【點睛】本題考查不等式恒成立問題,利用分離參數(shù)法和構造函數(shù),通過求新函數(shù)的最值求出參數(shù)范圍,考查轉化思想和計算能力.16.【解析】令直線:,與橢圓方程聯(lián)立消去得,可設,則,.可知,又,故.三角形周長與三角形內切圓的半徑的積是三角形面積的二倍,則內切圓半徑,其面積最大值為.故本題應填.點睛:圓錐曲線中最值與范圍的求法有兩種:(1)幾何法:若題目的條件和結論能明顯體現(xiàn)幾何特征及意義,則考慮利用圖形性質來解決,這就是幾何法.(2)代數(shù)法:若題目的條件和結論能體現(xiàn)一種明確的函數(shù),則可首先建立起目標函數(shù),再求這個函數(shù)的最值,求函數(shù)最值的常用方法有配方法,判別式法,重要不等式及函數(shù)的單調性法等.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)見解析【解析】
(Ⅰ)求函數(shù)的導數(shù),利用x=2是f(x)的一個極值點,得f'(2)=0建立方程求出a的值,結合導數(shù)的幾何意義進行求解即可;(Ⅱ)利用參數(shù)法分離法得到,構造函數(shù)求出函數(shù)的導數(shù)研究函數(shù)的單調性和最值,利用數(shù)形結合轉化為圖象交點個數(shù)進行求解即可.【詳解】(Ⅰ)因為,則,因為是的一個極值點,所以,即,所以,因為,,則直線方程為,即;(Ⅱ)因為,所以,所以,設,則,所以在上是增函數(shù),在上是減函數(shù),故,所以,所以,設,則,所以在上是減函數(shù),上是增函數(shù),所以,所以當時,,函數(shù)在是減函數(shù),當時,,函數(shù)在是增函數(shù),因為時,,,,所以當時,方程無實數(shù)根,當時,方程有兩個不相等實數(shù)根,當或時,方程有1個實根.【點睛】本題考查函數(shù)中由極值點求參,導數(shù)的幾何意義,還考查了利用導數(shù)研究方程根的個數(shù)問題,屬于難題.18.(1)(2)【解析】
(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對值三角不等式,求得的取值范圍,根據(jù)分段函數(shù)解析式,求得的取值范圍,結合題意列不等式,解不等式求得的取值范圍.【詳解】(1),由得或或;解得.故所求解集為.(2),即.由(1)知,所以,即.∴,∴.【點睛】本小題考查了絕對值不等式,絕對值三角不等式和函數(shù)最值問題,考查運算求解能力,推理論證能力,化歸與轉化思想.19.(1)當時,直線l方程為x=-1;當時,直線l方程為y=(x+1)tanα;x2+y2=2x(2)或.【解析】
(1)對直線l的傾斜角分類討論,消去參數(shù)即可求出其普通方程;由,即可求出曲線C的直角坐標方程;(2)將直線l的參數(shù)方程代入曲線C的直角坐標方程,根據(jù)條件Δ=0,即可求解.【詳解】(1)當時,直線l的普通方程為x=-1;當時,消去參數(shù)得直線l的普通方程為y=(x+1)tanα.由ρ=2cosθ,得ρ2=2ρcosθ,所以x2+y2=2x,即為曲線C的直角坐標方程.(2)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcosα+3=0.由Δ=16cos2α-12=0,得cos2α=,所以cosα=或cosα=,故直線l的傾斜角α為或.【點睛】本題考查參數(shù)方程化普通方程,極坐標方程化直角坐標方程,考查直線與曲線的關系,屬于中檔題.20.(1)(2)證明見解析【解析】
(1)根據(jù)公式得到,計算得到答案.(2),根據(jù)裂項求和法計算得到,得到證明.【詳解】(1)由已知得時,,故.故數(shù)列為等比數(shù)列,且公比.又當時,,..(2)..【點睛】本題考查了數(shù)列通項公式和證明數(shù)列不等式,意在考查學生對于數(shù)列公式方法的綜合應用.21.(1);(2).【解析】
(1)根據(jù),,成等差數(shù)列以及為等比數(shù)列,通過直接對進行賦值計算出的首項和公比,即可求解出的通項公式;(2)的通項公式符合等差乘以等比的形式,采用錯位相減法進行求和.【詳解】(1)數(shù)列為等比數(shù)列,且,,成等差數(shù)列.設數(shù)列的公比為,,,解得(2),,,,.【點睛】本題考查等差、等比數(shù)列的綜合以及錯位相減法求和的應用,難度一般.判斷是否適合使用錯位相減法,可根據(jù)數(shù)列的通項公式是否符合等差乘以等比的形式來判斷.22.(1)見解析(2)【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 服裝紡織行業(yè)的顧問工作總結
- 2025年全球及中國無人值守汽車衡亭行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國化學鍍鎳 PTFE 涂層行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國一體式旋轉變壓器行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球軟組織水平種植體行業(yè)調研及趨勢分析報告
- 2025-2030全球保險業(yè)的低代碼和無代碼 (LCNC) 平臺行業(yè)調研及趨勢分析報告
- 2025年全球及中國加熱架式食物加熱器行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國商用車氣制動防抱死制動系統(tǒng)行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國熱水浴缸用換熱器行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國變電站智能巡視解決方案行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年人教五四新版八年級物理上冊階段測試試卷含答案
- 2025新人教版英語七年級下單詞表(小學部分)
- 2025年春季1530安全教育記錄主題
- 礦山2025年安全工作計劃
- 基本藥物制度政策培訓課件
- 2025年包裝印刷項目可行性研究報告
- 2025年九年級物理中考復習計劃
- 企業(yè)融資報告特斯拉成功案例分享
- 合資經(jīng)營工廠合同范本
- 2024年新疆(兵團)公務員考試《行測》真題及答案解析
- 2024年《論教育》全文課件
評論
0/150
提交評論