廣東省廣州市天河區(qū)2023年中考數(shù)學(xué)模擬精編試卷含解析_第1頁
廣東省廣州市天河區(qū)2023年中考數(shù)學(xué)模擬精編試卷含解析_第2頁
廣東省廣州市天河區(qū)2023年中考數(shù)學(xué)模擬精編試卷含解析_第3頁
廣東省廣州市天河區(qū)2023年中考數(shù)學(xué)模擬精編試卷含解析_第4頁
廣東省廣州市天河區(qū)2023年中考數(shù)學(xué)模擬精編試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.下表是某校合唱團(tuán)成員的年齡分布.年齡/歲13141516頻數(shù)515x對(duì)于不同的x,下列關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是()A.眾數(shù)、中位數(shù) B.平均數(shù)、中位數(shù) C.平均數(shù)、方差 D.中位數(shù)、方差2.(2011貴州安順,4,3分)我市某一周的最高氣溫統(tǒng)計(jì)如下表:最高氣溫(℃)

25

26

27

28

天數(shù)

1

1

2

3

則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,273.甲、乙、丙三家超市為了促銷同一種定價(jià)為m元的商品,甲超市連續(xù)兩次降價(jià)20%;乙超市一次性降價(jià)40%;丙超市第一次降價(jià)30%,第二次降價(jià)10%,此時(shí)顧客要購(gòu)買這種商品,最劃算的超市是()A.甲 B.乙 C.丙 D.都一樣4.一元二次方程的根是()A. B.C. D.5.若2<<3,則a的值可以是()A.﹣7 B. C. D.126.如果零上2℃記作+2℃,那么零下3℃記作()A.-3℃ B.-2℃ C.+3℃ D.+2℃7.如圖,點(diǎn)P(x,y)(x>0)是反比例函數(shù)y=(k>0)的圖象上的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為圓心,OP為半徑的圓與x軸的正半軸交于點(diǎn)A,若△OPA的面積為S,則當(dāng)x增大時(shí),S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變8.下列幾何體是由4個(gè)相同的小正方體搭成的,其中左視圖與俯視圖相同的是()A. B. C. D.9.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.410.如圖,從一塊圓形紙片上剪出一個(gè)圓心角為90°的扇形ABC,使點(diǎn)A、B、C在圓周上,

將剪下的扇形作為一個(gè)圓錐側(cè)面,如果圓錐的高為,則這塊圓形紙片的直徑為(

)A.12cm B.20cm C.24cm D.28cm二、填空題(共7小題,每小題3分,滿分21分)11.從正n邊形一個(gè)頂點(diǎn)引出的對(duì)角線將它分成了8個(gè)三角形,則它的每個(gè)內(nèi)角的度數(shù)是______.12.如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)點(diǎn)F處,連接CF,則CF的長(zhǎng)度為_____13.因式分解:3a3﹣6a2b+3ab2=_____.14.將拋物線y=2x2平移,使頂點(diǎn)移動(dòng)到點(diǎn)P(﹣3,1)的位置,那么平移后所得新拋物線的表達(dá)式是_____.15.已知邊長(zhǎng)為5的菱形中,對(duì)角線長(zhǎng)為6,點(diǎn)在對(duì)角線上且,則的長(zhǎng)為__________.16.一個(gè)正多邊形的一個(gè)內(nèi)角是它的一個(gè)外角的5倍,則這個(gè)多邊形的邊數(shù)是_______________17.從1,2,3,4,5,6,7,8這八個(gè)數(shù)中,任意抽取一個(gè)數(shù),這個(gè)數(shù)恰好是合數(shù)的概率是__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點(diǎn),點(diǎn)P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.(1)求證:△PFA∽△ABE;(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F(xiàn),E為頂點(diǎn)的三角形也與△ABE相似?若存在,請(qǐng)求出x的值;若不存在,請(qǐng)說明理由;(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個(gè)公共點(diǎn)時(shí),請(qǐng)直接寫出x滿足的條件:.19.(5分)工人師傅用一塊長(zhǎng)為10dm,寬為6dm的矩形鐵皮制作一個(gè)無蓋的長(zhǎng)方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))求長(zhǎng)方體底面面積為12dm2時(shí),裁掉的正方形邊長(zhǎng)多大?20.(8分)根據(jù)函數(shù)學(xué)習(xí)中積累的知識(shí)與經(jīng)驗(yàn),李老師要求學(xué)生探究函數(shù)y=+1的圖象.同學(xué)們通過列表、描點(diǎn)、畫圖象,發(fā)現(xiàn)它的圖象特征,請(qǐng)你補(bǔ)充完整.(1)函數(shù)y=+1的圖象可以由我們熟悉的函數(shù)的圖象向上平移個(gè)單位得到;(2)函數(shù)y=+1的圖象與x軸、y軸交點(diǎn)的情況是:;(3)請(qǐng)你構(gòu)造一個(gè)函數(shù),使其圖象與x軸的交點(diǎn)為(2,0),且與y軸無交點(diǎn),這個(gè)函數(shù)表達(dá)式可以是.21.(10分)某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊周長(zhǎng)為30米的籬笆圍成.已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請(qǐng)說明理由;22.(10分)甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:(1)甲登山上升的速度是每分鐘米,乙在地時(shí)距地面的高度為米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)關(guān)系式.(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為50米?23.(12分)如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點(diǎn),P是邊AC上一動(dòng)點(diǎn),BP與CD相交于點(diǎn)E.(1)如果BC=6,AC=8,且P為AC的中點(diǎn),求線段BE的長(zhǎng);(2)聯(lián)結(jié)PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;(3)聯(lián)結(jié)PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長(zhǎng).24.(14分)某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進(jìn)行了抽樣調(diào)查.該部門隨機(jī)抽取了30名工人某天每人加工零件的個(gè)數(shù),數(shù)據(jù)如下:202119162718312921222520192235331917182918352215181831311922整理上面數(shù)據(jù),得到條形統(tǒng)計(jì)圖:樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:統(tǒng)計(jì)量平均數(shù)眾數(shù)中位數(shù)數(shù)值23m21根據(jù)以上信息,解答下列問題:上表中眾數(shù)m的值為;為調(diào)動(dòng)工人的積極性,該部門根據(jù)工人每天加工零件的個(gè)數(shù)制定了獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過這個(gè)標(biāo)準(zhǔn)的工人將獲得獎(jiǎng)勵(lì).如果想讓一半左右的工人能獲獎(jiǎng),應(yīng)根據(jù)來確定獎(jiǎng)勵(lì)標(biāo)準(zhǔn)比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)該部門規(guī)定:每天加工零件的個(gè)數(shù)達(dá)到或超過25個(gè)的工人為生產(chǎn)能手.若該部門有300名工人,試估計(jì)該部門生產(chǎn)能手的人數(shù).

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】

由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總?cè)藬?shù),結(jié)合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第15、16個(gè)數(shù)據(jù)的平均數(shù),可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數(shù)和為,則總?cè)藬?shù)為,故該組數(shù)據(jù)的眾數(shù)為14歲,中位數(shù)為(歲),所以對(duì)于不同的x,關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是眾數(shù)和中位數(shù),故選A.【點(diǎn)睛】本題主要考查頻數(shù)分布表及統(tǒng)計(jì)量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)及方差的定義和計(jì)算方法是解題的關(guān)鍵.2、A【解析】根據(jù)表格可知:數(shù)據(jù)25出現(xiàn)1次,26出現(xiàn)1次,27出現(xiàn)2次,28出現(xiàn)3次,∴眾數(shù)是28,這組數(shù)據(jù)從小到大排列為:25,26,27,27,28,28,28∴中位數(shù)是27∴這周最高氣溫的中位數(shù)與眾數(shù)分別是27,28故選A.3、B【解析】

根據(jù)各超市降價(jià)的百分比分別計(jì)算出此商品降價(jià)后的價(jià)格,再進(jìn)行比較即可得出結(jié)論.【詳解】解:降價(jià)后三家超市的售價(jià)是:甲為(1-20%)2m=0.64m,乙為(1-40%)m=0.6m,丙為(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此時(shí)顧客要購(gòu)買這種商品最劃算應(yīng)到的超市是乙.故選:B.【點(diǎn)睛】此題考查了列代數(shù)式,解題的關(guān)鍵是根據(jù)題目中的數(shù)量關(guān)系列出代數(shù)式,并對(duì)代數(shù)式比較大?。?、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點(diǎn):一元二次方程的解法——因式分解法——提公因式法.5、C【解析】

根據(jù)已知條件得到4<a-2<9,由此求得a的取值范圍,易得符合條件的選項(xiàng).【詳解】解:∵2<<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范圍是6<a<1.觀察選項(xiàng),只有選項(xiàng)C符合題意.故選C.【點(diǎn)睛】考查了估算無理數(shù)的大小,估算無理數(shù)大小要用夾逼法.6、A【解析】

一對(duì)具有相反意義的量中,先規(guī)定其中一個(gè)為正,則另一個(gè)就用負(fù)表示.【詳解】∵“正”和“負(fù)”相對(duì),∴如果零上2℃記作+2℃,那么零下3℃記作-3℃.故選A.7、D【解析】

作PB⊥OA于B,如圖,根據(jù)垂徑定理得到OB=AB,則S△POB=S△PAB,再根據(jù)反比例函數(shù)k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點(diǎn)睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點(diǎn),過這一個(gè)點(diǎn)向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.8、C【解析】試題分析:從物體的前面向后面投射所得的視圖稱主視圖(正視圖)——能反映物體的前面形狀;從物體的上面向下面投射所得的視圖稱俯視圖——能反映物體的上面形狀;從物體的左面向右面投射所得的視圖稱左視圖——能反映物體的左面形狀.選項(xiàng)C左視圖與俯視圖都是,故選C.9、D【解析】

①根據(jù)作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=10°,∴AD=BD.∴點(diǎn)D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結(jié)論是:①②③④,,共有4個(gè).故選D.10、C【解析】

設(shè)這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,利用等腰直徑三角形的性質(zhì)得到AB=R,利用圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng)得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到這塊圓形紙片的直徑.【詳解】設(shè)這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,則AB=R,根據(jù)題意得:2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以這塊圓形紙片的直徑為24cm.故選C.【點(diǎn)睛】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).二、填空題(共7小題,每小題3分,滿分21分)11、144°【解析】

根據(jù)多邊形內(nèi)角和公式計(jì)算即可.【詳解】解:由題知,這是一個(gè)10邊形,根據(jù)多邊形內(nèi)角和公式:每個(gè)內(nèi)角等于.故答案為:144°.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)多邊形內(nèi)角和公式的應(yīng)用,掌握計(jì)算公式是解題的關(guān)鍵.12、【解析】

分析題意,如圖所示,連接BF,由翻折變換可知,BF⊥AE,BE=EF,由點(diǎn)E是BC的中點(diǎn)可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進(jìn)而可得到BF的長(zhǎng)度;結(jié)合題意可知FE=BE=EC,進(jìn)而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長(zhǎng)度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為【點(diǎn)睛】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì)13、3a(a﹣b)1【解析】

首先提取公因式3a,再利用完全平方公式分解即可.【詳解】3a3﹣6a1b+3ab1,=3a(a1﹣1ab+b1),=3a(a﹣b)1.故答案為:3a(a﹣b)1.【點(diǎn)睛】此題考查多項(xiàng)式的因式分解,多項(xiàng)式分解因式時(shí)如果有公因式必須先提取公因式,然后再利用公式法分解因式,根據(jù)多項(xiàng)式的特點(diǎn)用適合的分解因式的方法是解題的關(guān)鍵.14、y=2(x+3)2+1【解析】

由于拋物線平移前后二次項(xiàng)系數(shù)不變,然后根據(jù)頂點(diǎn)式寫出新拋物線解析式.【詳解】拋物線y=2x2平移,使頂點(diǎn)移到點(diǎn)P(﹣3,1)的位置,所得新拋物線的表達(dá)式為y=2(x+3)2+1.故答案為:y=2(x+3)2+1【點(diǎn)睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點(diǎn)平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點(diǎn)坐標(biāo),即可求出解析式.15、3或1【解析】

菱形ABCD中,邊長(zhǎng)為1,對(duì)角線AC長(zhǎng)為6,由菱形的性質(zhì)及勾股定理可得AC⊥BD,BO=4,分當(dāng)點(diǎn)E在對(duì)角線交點(diǎn)左側(cè)時(shí)(如圖1)和當(dāng)點(diǎn)E在對(duì)角線交點(diǎn)左側(cè)時(shí)(如圖2)兩種情況求BE得長(zhǎng)即可.【詳解】解:當(dāng)點(diǎn)E在對(duì)角線交點(diǎn)左側(cè)時(shí),如圖1所示:∵菱形ABCD中,邊長(zhǎng)為1,對(duì)角線AC長(zhǎng)為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4﹣1=3,當(dāng)點(diǎn)E在對(duì)角線交點(diǎn)左側(cè)時(shí),如圖2所示:∵菱形ABCD中,邊長(zhǎng)為1,對(duì)角線AC長(zhǎng)為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4+1=1,故答案為3或1.【點(diǎn)睛】本題主要考查了菱形的性質(zhì),解決問題時(shí)要注意分當(dāng)點(diǎn)E在對(duì)角線交點(diǎn)左側(cè)時(shí)和當(dāng)點(diǎn)E在對(duì)角線交點(diǎn)左側(cè)時(shí)兩種情況求BE得長(zhǎng).16、1【解析】

設(shè)這個(gè)正多邊的外角為x°,則內(nèi)角為5x°,根據(jù)內(nèi)角和外角互補(bǔ)可得x+5x=180,解可得x的值,再利用外角和360°÷外角度數(shù)可得邊數(shù).【詳解】設(shè)這個(gè)正多邊的外角為x°,由題意得:x+5x=180,解得:x=30,360°÷30°=1.故答案為:1.【點(diǎn)睛】此題主要考查了多邊形的內(nèi)角和外角,關(guān)鍵是計(jì)算出外角的度數(shù),進(jìn)而得到邊數(shù).17、.【解析】

根據(jù)合數(shù)定義,用合數(shù)的個(gè)數(shù)除以數(shù)的總數(shù)即為所求的概率.【詳解】∵在1,2,3,4,5,6,7,8這八個(gè)數(shù)中,合數(shù)有4、6、8這3個(gè),∴這個(gè)數(shù)恰好是合數(shù)的概率是.故答案為:.【點(diǎn)睛】本題考查了概率的求法.如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A);找到合數(shù)的個(gè)數(shù)是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)3或.(3)或0<【解析】

(1)根據(jù)矩形的性質(zhì),結(jié)合已知條件可以證明兩個(gè)角對(duì)應(yīng)相等,從而證明三角形相似;

(2)由于對(duì)應(yīng)關(guān)系不確定,所以應(yīng)針對(duì)不同的對(duì)應(yīng)關(guān)系分情況考慮:當(dāng)時(shí),則得到四邊形為矩形,從而求得的值;當(dāng)時(shí),再結(jié)合(1)中的結(jié)論,得到等腰.再根據(jù)等腰三角形的三線合一得到是的中點(diǎn),運(yùn)用勾股定理和相似三角形的性質(zhì)進(jìn)行求解.

(3)此題首先應(yīng)針對(duì)點(diǎn)的位置分為兩種大情況:①與AE相切,②與線段只有一個(gè)公共點(diǎn),不一定必須相切,只要保證和線段只有一個(gè)公共點(diǎn)即可.故求得相切時(shí)的情況和相交,但其中一個(gè)交點(diǎn)在線段外的情況即是的取值范圍.【詳解】(1)證明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情況1,當(dāng)△EFP∽△ABE,且∠PEF=∠EAB時(shí),則有PE∥AB∴四邊形ABEP為矩形,∴PA=EB=3,即x=3.情況2,當(dāng)△PFE∽△ABE,且∠PEF=∠AEB時(shí),∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴點(diǎn)F為AE的中點(diǎn),即∴滿足條件的x的值為3或(3)或【點(diǎn)睛】?jī)山M角對(duì)應(yīng)相等,兩三角形相似.19、裁掉的正方形的邊長(zhǎng)為2dm,底面積為12dm2.【解析】試題分析:設(shè)裁掉的正方形的邊長(zhǎng)為xdm,則制作無蓋的長(zhǎng)方體容器的長(zhǎng)為(10-2x)dm,寬為(6-2x)dm,根據(jù)長(zhǎng)方體底面面積為12dm2列出方程,解方程即可求得裁掉的正方形邊長(zhǎng).試題解析:設(shè)裁掉的正方形的邊長(zhǎng)為xdm,由題意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的邊長(zhǎng)為2dm,底面積為12dm2.20、(1),1;(2)與x軸交于(﹣1,0),與y軸沒交點(diǎn);(3)答案不唯一,如:y=﹣+1.【解析】

(1)根據(jù)函數(shù)圖象的平移規(guī)律,可得答案;(2)根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得答案;(3)根據(jù)點(diǎn)的坐標(biāo)滿足函數(shù)解析式,可得答案.【詳解】(1)函數(shù)的圖象可以由我們熟悉的函數(shù)的圖象向上平移1個(gè)單位得到,故答案為:,1;(2)函數(shù)的圖象與x軸、y軸交點(diǎn)的情況是:與x軸交于(﹣1,0),與y軸沒交點(diǎn),故答案為:與x軸交于(﹣1,0),與y軸沒交點(diǎn);(3)請(qǐng)你構(gòu)造一個(gè)函數(shù),使其圖象與x軸的交點(diǎn)為(2,0),且與y軸無交點(diǎn),這個(gè)函數(shù)表達(dá)式可以是:y=﹣+1,答案不唯一,故答案為:y=﹣+1.【點(diǎn)睛】本題考查了函數(shù)圖像的平移變換,函數(shù)自變量的取值范圍,函數(shù)圖象與坐標(biāo)軸的交點(diǎn)等知識(shí),利用函數(shù)圖象的平移規(guī)律是解題關(guān)鍵.21、(1)2(2)當(dāng)x=4時(shí),y最小=88平方米【解析】(1)根據(jù)題意得方程解即可;(2)設(shè)苗圃園的面積為y,根據(jù)題意得到二次函數(shù)的解析式y(tǒng)=x(31-2x)=-2x2+31x,根據(jù)二次函數(shù)的性質(zhì)求解即可.解:(1)苗圃園與墻平行的一邊長(zhǎng)為(31-2x)米.依題意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依題意,得8≤31-2x≤3.解得6≤x≤4.面積S=x(31-2x)=-2(x-)2+(6≤x≤4).①當(dāng)x=時(shí),S有最大值,S最大=;②當(dāng)x=4時(shí),S有最小值,S最?。?×(31-22)=88“點(diǎn)睛”此題考查了二次函數(shù)、一元二次不等式的實(shí)際應(yīng)用問題,解題的關(guān)鍵是根據(jù)題意構(gòu)建二次函數(shù)模型,然后根據(jù)二次函數(shù)的性質(zhì)求解即可.22、(1)10;1;(2);(3)4分鐘、9分鐘或3分鐘.【解析】

(1)根據(jù)速度=高度÷時(shí)間即可算出甲登山上升的速度;根據(jù)高度=速度×?xí)r間即可算出乙在A地時(shí)距地面的高度b的值;(2)分0≤x≤2和x≥2兩種情況,根據(jù)高度=初始高度+速度×?xí)r間即可得出y關(guān)于x的函數(shù)關(guān)系;(3)當(dāng)乙未到終點(diǎn)時(shí),找出甲登山全程中y關(guān)于x的函數(shù)關(guān)系式,令二者做差等于50即可得出關(guān)于x的一元一次方程,解之即可求出x值;當(dāng)乙到達(dá)終點(diǎn)時(shí),用終點(diǎn)的高度-甲登山全程中y關(guān)于x的函數(shù)關(guān)系式=50,即可得出關(guān)于x的一元一次方程,解之可求出x值.綜上即可得出結(jié)論.【詳解】(1)(10-100)÷20=10(米/分鐘),b=3÷1×2=1.故答案為:10;1.(2)當(dāng)0≤x≤2時(shí),y=3x;當(dāng)x≥2時(shí),y=1+10×3(x-2)=1x-1.當(dāng)y=1x-1=10時(shí),x=2.∴乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式為.(3)甲登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式為y=10x+100(0≤x≤20).當(dāng)10x+100-(1x-1)=50時(shí),解得:x=4;當(dāng)1x-1-(10x+100)=50時(shí),解得:x=9;當(dāng)10-(10x+100)=50時(shí),解得:x=3.答:登山4分鐘、9分鐘或3分鐘時(shí),甲、乙兩人距地面的高度差為50

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論