微積分基本原理與定積分的計算_第1頁
微積分基本原理與定積分的計算_第2頁
微積分基本原理與定積分的計算_第3頁
微積分基本原理與定積分的計算_第4頁
微積分基本原理與定積分的計算_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

§5

微積分學(xué)基本定理

一、變限積分與原函數(shù)的存在性

本節(jié)將介紹微積分學(xué)基本定理,并用以證明連續(xù)函數(shù)的原函數(shù)的存在性.在此基礎(chǔ)上又可導(dǎo)出定積分的換元積分法與分部積分法.

三、泰勒公式的積分型余項

二、換元積分法與分部積分法返回一、變限積分與原函數(shù)的存在性積分;類似稱為變下限的定積分.定理9.9(變上限定積分的連續(xù)性)證則為變上限的定于是定理9.10(微積分學(xué)基本定理)若f在

[a,b]上連續(xù),上處處可導(dǎo),且由

x的任意性,

f在

[a,b]上連續(xù).證由于

f在

x處連續(xù),因此注1

本定理溝通了導(dǎo)數(shù)與定積分這兩個表面上似續(xù)函數(shù)必存在原函數(shù)”這個重要結(jié)論.乎不相干的概念之間的內(nèi)在聯(lián)系,也證明了“連注2

由于f的任意兩個原函數(shù)只能相差一個常數(shù),所以當(dāng)f為連續(xù)函數(shù)時,它的任一原函數(shù)F必為二、換元積分法與分部積分法則定理9.12(定積分換元積分法)注與不定積分不同之處:定積分換元后不一定要例1解(不變元,不變限)元積分法時,引入了新變量,此時須改變積分限.保留原積分變量,因此不必改變積分限;用第二換用原變量代回.一般說來,用第一換元積分法時,例2解(變元,變限)例3解(必須注意偶次根式的非負(fù)性)例4解因此,積分的分部積分公式:若

u(x),v(x)為

[a,b]上的連續(xù)可微函數(shù),則有定定理9.13(定積分分部積分法)例5解例6

計算解例7.

計算解令

例8.

計算解若

u(x),v(x)在

[a,b]上有

(n+1)階連續(xù)導(dǎo)函數(shù),則由此可得以下

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論