2023屆江蘇省通州區(qū)金郊初級中學中考數(shù)學押題試卷含解析_第1頁
2023屆江蘇省通州區(qū)金郊初級中學中考數(shù)學押題試卷含解析_第2頁
2023屆江蘇省通州區(qū)金郊初級中學中考數(shù)學押題試卷含解析_第3頁
2023屆江蘇省通州區(qū)金郊初級中學中考數(shù)學押題試卷含解析_第4頁
2023屆江蘇省通州區(qū)金郊初級中學中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.用配方法解下列方程時,配方有錯誤的是()A.化為 B.化為C.化為 D.化為2.等腰三角形三邊長分別為,且是關(guān)于的一元二次方程的兩根,則的值為()A.9 B.10 C.9或10 D.8或103.在“大家跳起來”的鄉(xiāng)村學校舞蹈比賽中,某校10名學生參賽成績統(tǒng)計如圖所示.對于這10名學生的參賽成績,下列說法中錯誤的是()A.眾數(shù)是90 B.中位數(shù)是90 C.平均數(shù)是90 D.極差是154.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為()A.(﹣) B.(﹣) C.(﹣) D.(﹣)5.下列計算結(jié)果是x5的為()A.x10÷x2B.x6﹣xC.x2?x3D.(x3)26.據(jù)統(tǒng)計,2015年廣州地鐵日均客運量均為人次,將用科學記數(shù)法表示為()A. B. C. D.7.在△ABC中,AD和BE是高,∠ABE=45°,點F是AB的中點,AD與FE,BE分別交于點G、H.∠CBE=∠BAD,有下列結(jié)論:①FD=FE;②AH=2CD;③BC?AD=AE2;④S△BEC=S△ADF.其中正確的有()A.1個 B.2個 C.3個 D.4個8.如圖,矩形ABCD的對角線AC,BD相交于點O,點M是AB的中點,若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.109.在剛過去的2017年,我國整體經(jīng)濟實力躍上了一個新臺階,城鎮(zhèn)新增就業(yè)1351萬人,數(shù)據(jù)“1351萬”用科學記數(shù)法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×10810.化簡:-,結(jié)果正確的是()A.1 B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.寫出經(jīng)過點(0,0),(﹣2,0)的一個二次函數(shù)的解析式_____(寫一個即可).12.若分式x-113.如圖,BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠P=______°.14.如圖,已知點A(a,b),0是原點,OA=OA1,OA⊥OA1,則點A1的坐標是.15.如圖,在直角坐標系中,點A(2,0),點B(0,1),過點A的直線l垂直于線段AB,點P是直線l上一動點,過點P作PC⊥x軸,垂足為C,把△ACP沿AP翻折,使點C落在點D處,若以A,D,P為頂點的三角形與△ABP相似,則所有滿足此條件的點P的坐標為___________________________.16.拋物線(為非零實數(shù))的頂點坐標為_____________.三、解答題(共8題,共72分)17.(8分)在圍棋盒中有x顆黑色棋子和y顆白色棋子,從盒中隨機地取出一個棋子,如果它是黑色棋子的概率是;如果往盒中再放進10顆黑色棋子,則取得黑色棋子的概率變?yōu)椋髕和y的值.18.(8分)如圖1所示是一輛直臂高空升降車正在進行外墻裝飾作業(yè).圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH為2m.當起重臂AC長度為8m,張角∠HAC為118°時,求操作平臺C離地面的高度.(果保留小數(shù)點后一位,參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)19.(8分)如圖,二次函數(shù)y=ax2+2x+c的圖象與x軸交于點A(﹣1,0)和點B,與y軸交于點C(0,3).(1)求該二次函數(shù)的表達式;(2)過點A的直線AD∥BC且交拋物線于另一點D,求直線AD的函數(shù)表達式;(3)在(2)的條件下,請解答下列問題:①在x軸上是否存在一點P,使得以B、C、P為頂點的三角形與△ABD相似?若存在,求出點P的坐標;若不存在,請說明理由;②動點M以每秒1個單位的速度沿線段AD從點A向點D運動,同時,動點N以每秒個單位的速度沿線段DB從點D向點B運動,問:在運動過程中,當運動時間t為何值時,△DMN的面積最大,并求出這個最大值.20.(8分)某養(yǎng)雞場有2500只雞準備對外出售.從中隨機抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(Ⅰ)圖①中的值為;(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(Ⅲ)根據(jù)樣本數(shù)據(jù),估計這2500只雞中,質(zhì)量為的約有多少只?21.(8分)解方程:.22.(10分)問題探究(1)如圖①,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關(guān)系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.23.(12分)如圖,曲線BC是反比例函數(shù)y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),拋物線y=﹣x2+2bx的頂點記作A.(1)求k的值.(2)判斷點A是否可與點B重合;(3)若拋物線與BC有交點,求b的取值范圍.24.如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經(jīng)過點B的直線交y軸于點E(0,2).(1)求該拋物線的解析式;(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結(jié)PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結(jié)AC,將△AOC繞點O逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)中的三角形為△A′OC′,在旋轉(zhuǎn)過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.【詳解】解:、,,,,故選項正確.、,,,,故選項錯誤.、,,,,,故選項正確.、,,,,.故選項正確.故選:.【點睛】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).2、B【解析】

由題意可知,等腰三角形有兩種情況:當a,b為腰時,a=b,由一元二次方程根與系數(shù)的關(guān)系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;當2為腰時,a=2(或b=2),此時2+b=6(或a+2=6),解得b=4(a=4),這時三邊為2,2,4,不符合三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,故不合題意.所以n只能為1.故選B3、C【解析】

由統(tǒng)計圖中提供的數(shù)據(jù),根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、極差的定義分別列出算式,求出答案:【詳解】解:∵90出現(xiàn)了5次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是90;∵共有10個數(shù),∴中位數(shù)是第5、6個數(shù)的平均數(shù),∴中位數(shù)是(90+90)÷2=90;∵平均數(shù)是(80×1+85×2+90×5+95×2)÷10=89;極差是:95﹣80=1.∴錯誤的是C.故選C.4、A【解析】

直接利用相似三角形的判定與性質(zhì)得出△ONC1三邊關(guān)系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設(shè)NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數(shù)舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(-,).故選A.【點睛】此題主要考查了矩形的性質(zhì)以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關(guān)鍵.5、C【解析】解:A.x10÷x2=x8,不符合題意;B.x6﹣x不能進一步計算,不符合題意;C.x2x3=x5,符合題意;D.(x3)2=x6,不符合題意.故選C.6、D【解析】

科學記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【詳解】解:6

590

000=6.59×1.故選:D.【點睛】本題考查學生對科學記數(shù)法的掌握,一定要注意a的形式,以及指數(shù)n的確定方法.7、C【解析】

根據(jù)題意和圖形,可以判斷各小題中的結(jié)論是否成立,從而可以解答本題.【詳解】∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵點F是AB的中點,∴FD=AB,F(xiàn)E=AB,∴FD=FE,①正確;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正確;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD∽△BCE,∴,即BC?AD=AB?BE,∵∠AEB=90°,AE=BE,∴AB=BEBC?AD=BE?BE,∴BC?AD=AE2;③正確;設(shè)AE=a,則AB=a,∴CE=a﹣a,∴=,即,∵AF=AB,∴,∴S△BEC≠S△ADF,故④錯誤,故選:C.【點睛】本題考查相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、直角三角形斜邊上的中線,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.8、D【解析】

利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點O,

∴∠BAD=90°,點O是線段BD的中點,

∵點M是AB的中點,

∴OM是△ABD的中位線,

∴AD=2OM=1.

∴在直角△ABD中,由勾股定理知:BD=.

故選:D.【點睛】本題考查了三角形中位線定理和矩形的性質(zhì),利用三角形中位線定理求得AD的長度是解題的關(guān)鍵.9、B【解析】

根據(jù)科學記數(shù)法進行解答.【詳解】1315萬即13510000,用科學記數(shù)法表示為1.351×107.故選擇B.【點睛】本題主要考查科學記數(shù)法,科學記數(shù)法表示數(shù)的標準形式是a×10n(1≤│a│<10且n為整數(shù)).10、B【解析】

先將分母進行通分,化為(x+y)(x-y)的形式,分子乘上相應的分式,進行化簡.【詳解】【點睛】本題考查的是分式的混合運算,解題的關(guān)鍵就是熟練掌握運算規(guī)則.二、填空題(本大題共6個小題,每小題3分,共18分)11、y=x2+2x(答案不唯一).【解析】

設(shè)此二次函數(shù)的解析式為y=ax(x+2),令a=1即可.【詳解】∵拋物線過點(0,0),(﹣2,0),∴可設(shè)此二次函數(shù)的解析式為y=ax(x+2),把a=1代入,得y=x2+2x.故答案為y=x2+2x(答案不唯一).【點睛】本題考查的是待定系數(shù)法求二次函數(shù)解析式,此題屬開放性題目,答案不唯一.12、1【解析】試題分析:根據(jù)題意,得|x|-1=0,且x-1≠0,解得x=-1.考點:分式的值為零的條件.13、30【解析】

根據(jù)角平分線的定義可得∠PBC=20°,∠PCM=50°,根據(jù)三角形外角性質(zhì)即可求出∠P的度數(shù).【詳解】∵BP是∠ABC的平分線,CP是∠ACM的平分線,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案為:30【點睛】本題考查及角平分線的定義及三角形外角性質(zhì),三角形的外角等于和它不相鄰的兩個內(nèi)角的和,熟練掌握三角形外角性質(zhì)是解題關(guān)鍵.14、(﹣b,a)【解析】解:如圖,從A、A1向x軸作垂線,設(shè)A1的坐標為(x,y),設(shè)∠AOX=α,∠A1OD=β,A1坐標(x,y)則α+β="90°sinα=cosβ"cosα="sinβ"sinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐標為(﹣b,a).【點評】重點理解三角函數(shù)的定義和求解方法,主要應用公式sinα=cosβ,cosα=sinβ.15、【解析】∵點A(2,0),點B(0,1),∴OA=2,OB=1,.∵l⊥AB,∴∠PAC+OAB=90°.∵∠OBA+∠OAB=90°,∴∠OBA=∠PAC.∵∠AOB=∠ACP,∴△ABO∽△PAC,.設(shè)AC=m,PC=2m,.當點P在x軸的上方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2+2=4,∴P(4,4).當點P在x軸的下方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2-2=0,∴P(0,4).所以P點坐標為或(4,4)或或(0,4)【點睛】本題考察了相似三角形的判定,相似三角形的性質(zhì),平面直角坐標系點的坐標及分類討論的思想.在利用相似三角形的性質(zhì)列比例式時,要找好對應邊,如果對應邊不確定,要分類討論.因點P在x軸上方和下方得到的結(jié)果也不一樣,所以要分兩種情況求解.請在此填寫本題解析!16、【解析】【分析】將拋物線的解析式由一般式化為頂點式,即可得到頂點坐標.【詳解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2+1-m,所以拋物線的頂點坐標為(-1,1-m),故答案為(-1,1-m).【點睛】本題考查了拋物線的頂點坐標,把拋物線的解析式轉(zhuǎn)化為頂點式是解題的關(guān)鍵.三、解答題(共8題,共72分)17、x=15,y=1【解析】

根據(jù)概率的求法:在圍棋盒中有x顆黑色棋子和y顆白色棋子,共x+y顆棋子,如果它是黑色棋子的概率是,有成立.化簡可得y與x的函數(shù)關(guān)系式;

(2)若往盒中再放進10顆黑色棋子,在盒中有10+x+y顆棋子,則取得黑色棋子的概率變?yōu)?,結(jié)合(1)的條件,可得,解可得x=15,y=1.【詳解】依題意得,,化簡得,,解得,.,檢驗當x=15,y=1時,,,∴x=15,y=1是原方程的解,經(jīng)檢驗,符合題意.答:x=15,y=1.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.18、5.8【解析】

過點作于點,過點作于點,易得四邊形為矩形,則,再計算出,在中,利用正弦可計算出CF的長度,然后計算CF+EF即可.【詳解】解:如圖,過點作于點,過點作于點,.又,.∴四邊形為矩形.在中,,..答:操作平臺離地面的高度約為.【點睛】本題考查了解直角三角形的應用,先將實際問題抽象為數(shù)學問題,然后利用勾股定理和銳角三角函數(shù)的定義進行計算.19、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);當t=時,S△MDN的最大值為.【解析】

(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到結(jié)果;

(2)在y=-x2+2x+3中,令y=0,則-x2+2x+3=0,得到B(3,0),由已知條件得直線BC的解析式為y=-x+3,由于AD∥BC,設(shè)直線AD的解析式為y=-x+b,即可得到結(jié)論;

(3)①由BC∥AD,得到∠DAB=∠CBA,全等只要當或時,△PBC∽△ABD,解方程組得D(4,?5),求得設(shè)P的坐標為(x,0),代入比例式解得或x=?4.5,即可得到或P(?4.5,0);

②過點B作BF⊥AD于F,過點N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF求得求得由于于是得到即可得到結(jié)果.【詳解】(1)由題意知:解得∴二次函數(shù)的表達式為(2)在中,令y=0,則解得:∴B(3,0),由已知條件得直線BC的解析式為y=?x+3,∵AD∥BC,∴設(shè)直線AD的解析式為y=?x+b,∴0=1+b,∴b=?1,∴直線AD的解析式為y=?x?1;(3)①∵BC∥AD,∴∠DAB=∠CBA,∴只要當:或時,△PBC∽△ABD,解得D(4,?5),∴設(shè)P的坐標為(x,0),即或解得或x=?4.5,∴或P(?4.5,0),②過點B作BF⊥AD于F,過點N作NE⊥AD于E,在Rt△AFB中,∴sin∠BAF∴∴∵又∵∴∴當時,的最大值為【點睛】屬于二次函數(shù)的綜合題,考查待定系數(shù)法求二次函數(shù)解析式,銳角三角形函數(shù),相似三角形的判定與性質(zhì),二次函數(shù)的最值等,綜合性比較強,難度較大.20、(Ⅰ)28.(Ⅱ)平均數(shù)是1.52.眾數(shù)為1.8.中位數(shù)為1.5.(Ⅲ)200只.【解析】分析:(Ⅰ)用整體1減去所有已知的百分比即可求出m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權(quán)平均數(shù)的定義計算即可;(Ⅲ)用總數(shù)乘以樣本中2.0kg的雞所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)觀察條形統(tǒng)計圖,∵,∴這組數(shù)據(jù)的平均數(shù)是1.52.∵在這組數(shù)據(jù)中,1.8出現(xiàn)了16次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為1.8.∵將這組數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是1.5,有,∴這組數(shù)據(jù)的中位數(shù)為1.5.(Ⅲ)∵在所抽取的樣本中,質(zhì)量為的數(shù)量占.∴由樣本數(shù)據(jù),估計這2500只雞中,質(zhì)量為的數(shù)量約占.有.∴這2500只雞中,質(zhì)量為的約有200只.點睛:此題主要考查了平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義以及利用樣本估計總體等知識.找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).21、【解析】分析:此題應先將原分式方程兩邊同時乘以最簡公分母,則原分式方程可化為整式方程,解出即可.詳解:去分母,得.去括號,得.移項,得.合并同類項,得.系數(shù)化為1,得.經(jīng)檢驗,原方程的解為.點睛:本題主要考查分式方程的解法.注意:解分式方程必須檢驗.22、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解析】

(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進而得到EF=FG問題即可解決;(2)將△ABD繞著點B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE,由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據(jù)DE<DC+CE,則當D、C、E三點共線時,DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,由旋轉(zhuǎn)的性質(zhì)得△DBE是等邊三角形,則DE=AC,根據(jù)在等邊三角形BCE中,EF⊥BC,可求出BF,EF,以BC為直徑作⊙F,則點D在⊙F上,連接DF,可求出DF,則AC=DE≤DF+EF,代入數(shù)值即可解決問題.【詳解】(1)如圖①,延長CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案為:BE+DF=EF;(2)存在.在等邊三角形ABC中,AB=BC,∠ABC=60°,如圖②,將△ABD繞著點B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE.由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等邊三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴當D、C、E三點共線時,DE存在最大值,且最大值為6,∴BD的最大值為6;(3)存在.如圖③,以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等邊三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC為直徑作⊙F,則點D在⊙F上,連接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值為2+2.【點睛】本題考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論