2023屆江蘇省泰州市靖江實驗校中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第1頁
2023屆江蘇省泰州市靖江實驗校中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第2頁
2023屆江蘇省泰州市靖江實驗校中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第3頁
2023屆江蘇省泰州市靖江實驗校中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第4頁
2023屆江蘇省泰州市靖江實驗校中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列命題中,錯誤的是()A.三角形的兩邊之和大于第三邊B.三角形的外角和等于360°C.等邊三角形既是軸對稱圖形,又是中心對稱圖形D.三角形的一條中線能將三角形分成面積相等的兩部分2.某校有35名同學(xué)參加眉山市的三蘇文化知識競賽,預(yù)賽分?jǐn)?shù)各不相同,取前18名同學(xué)參加決賽.其中一名同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進(jìn)入決賽,只需要知道這35名同學(xué)分?jǐn)?shù)的(

).A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差3.如圖,反比例函數(shù)(x>0)的圖象經(jīng)過矩形OABC對角線的交點(diǎn)M,分別于AB、BC交于點(diǎn)D、E,若四邊形ODBE的面積為9,則k的值為()A.1 B.2 C.3 D.44.小明和他的爸爸媽媽共3人站成一排拍照,他的爸爸媽媽相鄰的概率是()A. B. C. D.5.如圖,△A′B′C′是△ABC以點(diǎn)O為位似中心經(jīng)過位似變換得到的,若△A′B′C′的面積與△ABC的面積比是4:9,則OB′:OB為()A.2:3 B.3:2 C.4:5 D.4:96.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.7.定義:若點(diǎn)P(a,b)在函數(shù)y=1x的圖象上,將以a為二次項系數(shù),b為一次項系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y=1x的一個“派生函數(shù)”.例如:點(diǎn)(2,12)在函數(shù)y=1x的圖象上,則函數(shù)y=2x2+(1)存在函數(shù)y=1x(2)函數(shù)y=1xA.命題(1)與命題(2)都是真命題B.命題(1)與命題(2)都是假命題C.命題(1)是假命題,命題(2)是真命題D.命題(1)是真命題,命題(2)是假命題8.如右圖,⊿ABC內(nèi)接于⊙O,若∠OAB=28°則∠C的大小為()A.62° B.56° C.60° D.28°9.據(jù)統(tǒng)計,2018年全國春節(jié)運(yùn)輸人數(shù)約為3000000000人,將3000000000用科學(xué)記數(shù)法表示為()A.0.3×1010B.3×109C.30×108D.300×10710.如圖,A,B兩點(diǎn)分別位于一個池塘的兩端,小聰想用繩子測量A,B間的距離,但繩子不夠長,一位同學(xué)幫他想了一個主意:先在地上取一個可以直接到達(dá)A,B的點(diǎn)C,找到AC,BC的中點(diǎn)D,E,并且測出DE的長為10m,則A,B間的距離為()A.15m B.25m C.30m D.20m11.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.212.如圖,矩形ABCD中,AB=8,BC=1.點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=(x<0)的圖象相交于點(diǎn)A和點(diǎn)B.當(dāng)y1>y2>0時,x的取值范圍是_____.14.一個正n邊形的中心角等于18°,那么n=_____.15.如圖,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分線DE交AC于點(diǎn)D,連接BD,則∠ABD=___________°.16.函數(shù)中自變量的取值范圍是______________17.現(xiàn)有八個大小相同的矩形,可拼成如圖1、2所示的圖形,在拼圖2時,中間留下了一個邊長為2的小正方形,則每個小矩形的面積是_____.18.函數(shù)的自變量的取值范圍是.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某市飛翔航模小隊,計劃購進(jìn)一批無人機(jī).已知3臺A型無人機(jī)和4臺B型無人機(jī)共需6400元,4臺A型無人機(jī)和3臺B型無人機(jī)共需6200元.(1)求一臺A型無人機(jī)和一臺B型無人機(jī)的售價各是多少元?(2)該航模小隊一次購進(jìn)兩種型號的無人機(jī)共50臺,并且B型無人機(jī)的數(shù)量不少于A型無人機(jī)的數(shù)量的2倍.設(shè)購進(jìn)A型無人機(jī)x臺,總費(fèi)用為y元.①求y與x的關(guān)系式;②購進(jìn)A型、B型無人機(jī)各多少臺,才能使總費(fèi)用最少?20.(6分)問題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點(diǎn)D為邊BC上的動點(diǎn),連接AD以AD為直徑作⊙O交邊AB、AC分別于點(diǎn)E、F,接E、F,求EF的最小值;問題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長是否存在最小值,若存在,求最小值:若不存在,請說明理由.21.(6分)如圖,將邊長為m的正方形紙板沿虛線剪成兩個小正方形和兩個矩形,拿掉邊長為n的小正方形紙板后,將剩下的三塊拼成新的矩形.用含m或n的代數(shù)式表示拼成矩形的周長;m=7,n=4,求拼成矩形的面積.22.(8分)小明和小亮為下周日計劃了三項活動,分別是看電影(記為A)、去郊游(記為B)、去圖書館(記為C).他們各自在這三項活動中任選一個,每項活動被選中的可能性相同.(1)小明選擇去郊游的概率為多少;(2)請用樹狀圖或列表法求小明和小亮的選擇結(jié)果相同的概率.23.(8分)如圖,甲、乙兩座建筑物的水平距離為,從甲的頂部處測得乙的頂部處的俯角為,測得底部處的俯角為,求甲、乙建筑物的高度和(結(jié)果取整數(shù)).參考數(shù)據(jù):,.24.(10分)如圖,在?ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).求證:△ADE≌△CBF;求證:四邊形BFDE為矩形.25.(10分)“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖:(1)填空:樣本中的總?cè)藬?shù)為;開私家車的人數(shù)m=;扇形統(tǒng)計圖中“騎自行車”所在扇形的圓心角為度;(2)補(bǔ)全條形統(tǒng)計圖;(3)該單位共有2000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?26.(12分)AB為⊙O直徑,C為⊙O上的一點(diǎn),過點(diǎn)C的切線與AB的延長線相交于點(diǎn)D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點(diǎn),連接CE,BE,若BE=2,求CE的長.27.(12分)某校對六至九年級學(xué)生圍繞“每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:該校對多少學(xué)生進(jìn)行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡籃球活動的有多少?占被調(diào)查人數(shù)的百分比是多少?若該校九年級共有200名學(xué)生,如圖是根據(jù)各年級學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請估計全校六至九年級學(xué)生中最喜歡跳繩活動的人數(shù)約為多少?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據(jù)三角形的性質(zhì)即可作出判斷.【詳解】解:A、正確,符合三角形三邊關(guān)系;B、正確;三角形外角和定理;C、錯誤,等邊三角形既是軸對稱圖形,不是中心對稱圖形;D、三角形的一條中線能將三角形分成面積相等的兩部分,正確.故選:C.【點(diǎn)睛】本題考查了命題真假的判斷,屬于基礎(chǔ)題.根據(jù)定義:符合事實真理的判斷是真命題,不符合事實真理的判斷是假命題,不難選出正確項.2、B【解析】分析:由于比賽取前18名參加決賽,共有35名選手參加,根據(jù)中位數(shù)的意義分析即可.詳解:35個不同的成績按從小到大排序后,中位數(shù)及中位數(shù)之后的共有18個數(shù),故只要知道自己的成績和中位數(shù)就可以知道是否進(jìn)入決賽了.故選B.點(diǎn)睛:本題考查了統(tǒng)計量的選擇,以及中位數(shù)意義,解題的關(guān)鍵是正確的求出這組數(shù)據(jù)的中位數(shù)3、C【解析】

本題可從反比例函數(shù)圖象上的點(diǎn)E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關(guān)系,列出等式求出k值.【詳解】由題意得:E、M、D位于反比例函數(shù)圖象上,則,過點(diǎn)M作MG⊥y軸于點(diǎn)G,作MN⊥x軸于點(diǎn)N,則S□ONMG=|k|.又∵M(jìn)為矩形ABCO對角線的交點(diǎn),∴S矩形ABCO=4S□ONMG=4|k|,∵函數(shù)圖象在第一象限,k>0,∴.解得:k=1.故選C.【點(diǎn)睛】本題考查反比例函數(shù)系數(shù)k的幾何意義,過雙曲線上的任意一點(diǎn)分別向兩條坐標(biāo)軸作垂線,與坐標(biāo)軸圍成的矩形面積就等于|k|,本知識點(diǎn)是中考的重要考點(diǎn),同學(xué)們應(yīng)高度關(guān)注.4、D【解析】試題解析:設(shè)小明為A,爸爸為B,媽媽為C,則所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸媽媽相鄰的概率是:,故選D.5、A【解析】

根據(jù)位似的性質(zhì)得△ABC∽△A′B′C′,再根據(jù)相似三角形的性質(zhì)進(jìn)行求解即可得.【詳解】由位似變換的性質(zhì)可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'與△ABC的面積的比4:9,∴△A'B'C'與△ABC的相似比為2:3,∴,故選A.【點(diǎn)睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點(diǎn)叫做位似中心.6、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故此選項不合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;C、不是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;故選D.【點(diǎn)睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.7、C【解析】試題分析:(1)根據(jù)二次函數(shù)y=ax2+bx的性質(zhì)a、b同號對稱軸在y軸左側(cè),a、b異號對稱軸在y軸右側(cè)即可判斷.(2)根據(jù)“派生函數(shù)”y=ax2+bx,x=0時,y=0,經(jīng)過原點(diǎn),不能得出結(jié)論.(1)∵P(a,b)在y=上,∴a和b同號,所以對稱軸在y軸左側(cè),∴存在函數(shù)y=的一個“派生函數(shù)”,其圖象的對稱軸在y軸的右側(cè)是假命題.(2)∵函數(shù)y=的所有“派生函數(shù)”為y=ax2+bx,∴x=0時,y=0,∴所有“派生函數(shù)”為y=ax2+bx經(jīng)過原點(diǎn),∴函數(shù)y=的所有“派生函數(shù)”,的圖象都進(jìn)過同一點(diǎn),是真命題.考點(diǎn):(1)命題與定理;(2)新定義型8、A【解析】

連接OB.在△OAB中,OA=OB(⊙O的半徑),∴∠OAB=∠OBA(等邊對等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=∠AOB(同弧所對的圓周角是所對的圓心角的一半),∴∠C=62°;故選A9、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).【詳解】解:根據(jù)科學(xué)計數(shù)法的定義可得,3000000000=3×109,故選擇B.【點(diǎn)睛】本題考查了科學(xué)計數(shù)法的定義,確定n的值是易錯點(diǎn).10、D【解析】

根據(jù)三角形的中位線定理即可得到結(jié)果.【詳解】解:由題意得AB=2DE=20cm,故選D.【點(diǎn)睛】本題考查的是三角形的中位線,解答本題的關(guān)鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.11、C【解析】

根據(jù)左視圖是從左面看到的圖形求解即可.【詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【點(diǎn)睛】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.12、C【解析】試題分析:連接EF交AC于點(diǎn)M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點(diǎn):菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-2<x<-0.5【解析】

根據(jù)圖象可直接得到y(tǒng)1>y2>0時x的取值范圍.【詳解】根據(jù)圖象得:當(dāng)y1>y2>0時,x的取值范圍是﹣2<x<﹣0.5,故答案為﹣2<x<﹣0.5.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,熟悉待定系數(shù)法以及理解函數(shù)圖象與不等式的關(guān)系是解題的關(guān)鍵.14、20【解析】

由正n邊形的中心角為18°,可得方程18n=360,解方程即可求得答案.【詳解】∵正n邊形的中心角為18°,∴18n=360,∴n=20.故答案為20.【點(diǎn)睛】本題考查的知識點(diǎn)是正多邊形和圓,解題的關(guān)鍵是熟練的掌握正多邊形和圓.15、1【解析】∵在△ABC中,AB=BC,∠ABC=110°,

∴∠A=∠C=1°,

∵AB的垂直平分線DE交AC于點(diǎn)D,

∴AD=BD,

∴∠ABD=∠A=1°;

故答案是1.16、x≤2且x≠1【解析】

解:根據(jù)題意得:且x?1≠0,解得:且故答案為且17、1.【解析】

設(shè)小矩形的長為x,寬為y,則由圖1可得5y=3x;由圖2可知2y-x=2.【詳解】解:設(shè)小矩形的長為x,寬為y,則可列出方程組,,解得,則小矩形的面積為6×10=1.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用.18、x≠1【解析】該題考查分式方程的有關(guān)概念根據(jù)分式的分母不為0可得X-1≠0,即x≠1那么函數(shù)y=的自變量的取值范圍是x≠1三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)一臺A型無人機(jī)售價800元,一臺B型無人機(jī)的售價1000元;(2)①y=﹣200x+50000;②購進(jìn)A型、B型無人機(jī)各16臺、34臺時,才能使總費(fèi)用最少.【解析】

(1)根據(jù)3臺A型無人機(jī)和4臺B型無人機(jī)共需6400元,4臺A型無人機(jī)和3臺B型無人機(jī)共需6200元,可以列出相應(yīng)的方程組,從而可以解答本題;(2)①根據(jù)題意可以得到y(tǒng)與x的函數(shù)關(guān)系式;②根據(jù)①中的函數(shù)關(guān)系式和B型無人機(jī)的數(shù)量不少于A型無人機(jī)的數(shù)量的2倍,可以求得購進(jìn)A型、B型無人機(jī)各多少臺,才能使總費(fèi)用最少.【詳解】解:(1)設(shè)一臺型無人機(jī)售價元,一臺型無人機(jī)的售價元,,解得,,答:一臺型無人機(jī)售價元,一臺型無人機(jī)的售價元;(2)①由題意可得,即y與x的函數(shù)關(guān)系式為;②∵B型無人機(jī)的數(shù)量不少于A型無人機(jī)的數(shù)量的2倍,,解得,,,∴當(dāng)時,y取得最小值,此時,答:購進(jìn)型、型無人機(jī)各臺、臺時,才能使總費(fèi)用最少.【點(diǎn)睛】本題考查二元一次方程組的應(yīng)用、一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)和方程的知識解答.20、(1)△ABC的外接圓的R為1;(2)EF的最小值為2;(3)存在,AC的最小值為9.【解析】

(1)如圖1中,作△ABC的外接圓,連接OA,OC.證明∠AOC=90°即可解決問題;(2)如圖2中,作AH⊥BC于H.當(dāng)直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當(dāng)AD與AH重合時,AD的值最短,此時EF的值也最短;(3)如圖3中,將△ADC繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設(shè)BE=CD=x.證明EC=AC,構(gòu)建二次函數(shù)求出EC的最小值即可解決問題.【詳解】解:(1)如圖1中,作△ABC的外接圓,連接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=1,∴OA=OC=1,∴△ABC的外接圓的R為1.(2)如圖2中,作AH⊥BC于H.∵AC=8,∠C=45°,∴AH=AC?sin45°=8×=8,∵∠BAC=10°,∴當(dāng)直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當(dāng)AD與AH重合時,AD的值最短,此時EF的值也最短,如圖2﹣1中,當(dāng)AD⊥BC時,作OH⊥EF于H,連接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF?cos30°=4?=1,∴EF=2EH=2,∴EF的最小值為2.(3)如圖3中,將△ADC繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設(shè)BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC=AC,∠AEC=∠ACE=45°,∴EC的值最小時,AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH=x,EH=x,∵CD+BC=2,CD=x,∴BC=2﹣x∴EC2=EH2+CH2=(x)2+=x2﹣2x+432,∵a=1>0,∴當(dāng)x=﹣=1時,EC的長最小,此時EC=18,∴AC=EC=9,∴AC的最小值為9.【點(diǎn)睛】本題屬于圓綜合題,考查了圓周角定理,勾股定理,解直角三角形,二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,學(xué)會構(gòu)建二次函數(shù)解決最值問題,屬于中考壓軸題.21、(1)矩形的周長為4m;(2)矩形的面積為1.【解析】

(1)根據(jù)題意和矩形的周長公式列出代數(shù)式解答即可.(2)根據(jù)題意列出矩形的面積,然后把m=7,n=4代入進(jìn)行計算即可求得.【詳解】(1)矩形的長為:m﹣n,矩形的寬為:m+n,矩形的周長為:2[(m-n)+(m+n)]=4m;(2)矩形的面積為S=(m+n)(m﹣n)=m2-n2,當(dāng)m=7,n=4時,S=72-42=1.【點(diǎn)睛】本題考查了矩形的周長與面積、列代數(shù)式問題、平方差公式等,解題的關(guān)鍵是根據(jù)題意和矩形的性質(zhì)列出代數(shù)式解答.22、(1)13;(2)1【解析】

(1)利用概率公式直接計算即可;(2)首先根據(jù)題意列表,然后求得所有等可能的結(jié)果與小明和小亮選擇結(jié)果相同的情況,再利用概率公式即可求得答案【詳解】(1)∵小明分別是從看電影(記為A)、去郊游(記為B)、去圖書館(記為C)的一個景點(diǎn)去游玩,∴小明選擇去郊游的概率=;(2)列表得:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知兩人選擇的方案共有9種等可能的結(jié)果,其中選擇同種方案有3種,所以小明和小亮的選擇結(jié)果相同的概率==.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.23、甲建筑物的高度約為,乙建筑物的高度約為.【解析】分析:首先分析圖形:根據(jù)題意構(gòu)造直角三角形;本題涉及兩個直角三角形,應(yīng)利用其公共邊構(gòu)造關(guān)系式,進(jìn)而可求出答案.詳解:如圖,過點(diǎn)作,垂足為.則.由題意可知,,,,,.可得四邊形為矩形.∴,.在中,,∴.在中,,∴.∴.∴.答:甲建筑物的高度約為,乙建筑物的高度約為.點(diǎn)睛:本題考查解直角三角形的應(yīng)用--仰角俯角問題,首先構(gòu)造直角三角形,再借助角邊關(guān)系、三角函數(shù)的定義解題,難度一般.24、(1)證明見解析;(2)證明見解析.【解析】

(1)由DE與AB垂直,BF與CD垂直,得到一對直角相等,再由ABCD為平行四邊形得到AD=BC,對角相等,利用AAS即可的值;(2)由平行四邊形的對邊平行得到DC與AB平行,得到∠CDE為直角,利用三個角為直角的四邊形為矩形即可的值.【詳解】解:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四邊形ABCD為平行四邊形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四邊形ABCD為平行四邊形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,則四邊形BFDE為矩形.【點(diǎn)睛】本題考查1.矩形的判定;2.全等三角形的判定與性質(zhì);3.平行四邊形的性質(zhì).25、(1)80,20,72;(2)16,補(bǔ)圖見解析;(3)原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【解析】試題分析:(1)用乘公交車的人數(shù)除以所占的百分比,計算即可求出總?cè)藬?shù),再用總?cè)藬?shù)乘以開私家車的所占的百分比求出m,用360°乘以騎自行車的所占的百分比計算即可得解:樣本中的總?cè)藬?shù)為:36÷45%=80人;開私家車的人數(shù)m=80×25%=20;扇形統(tǒng)計圖中“騎自行車”的圓心角為360°×(1-10%-25%-45%)=360°×20%=72°.(2)求出騎自行車的人數(shù),然后補(bǔ)全統(tǒng)計

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論