版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在的展開式中,的系數為()A.-120 B.120 C.-15 D.152.定義在R上的偶函數滿足,且在區(qū)間上單調遞減,已知是銳角三角形的兩個內角,則的大小關系是()A. B.C. D.以上情況均有可能3.已知,,,則a,b,c的大小關系為()A. B. C. D.4.已知,滿足條件(為常數),若目標函數的最大值為9,則()A. B. C. D.5.已知正四面體的內切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.276.設i是虛數單位,若復數是純虛數,則a的值為()A. B.3 C.1 D.7.設拋物線的焦點為F,拋物線C與圓交于M,N兩點,若,則的面積為()A. B. C. D.8.已知函數,若有2個零點,則實數的取值范圍為()A. B. C. D.9.已知函數,則函數的圖象大致為()A. B.C. D.10.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.211.二項式展開式中,項的系數為()A. B. C. D.12.已知復數滿足,其中是虛數單位,則復數在復平面中對應的點到原點的距離為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,的夾角為30°,,則_________.14.某種牛肉干每袋的質量服從正態(tài)分布,質檢部門的檢測數據顯示:該正態(tài)分布為,.某旅游團游客共購買這種牛肉干100袋,估計其中質量低于的袋數大約是_____袋.15.已知數列的前項和為且滿足,則數列的通項_______.16.割圓術是估算圓周率的科學方法,由三國時期數學家劉徽創(chuàng)立,他用圓內接正多邊形面積無限逼近圓面積,從而得出圓周率.現在半徑為1的圓內任取一點,則該點取自其內接正十二邊形內部的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.18.(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標準方程;(2)過點A(1,0)的直線與橢圓C交于點M,N,設P為橢圓上一點,且OM+ON=t19.(12分)如圖,已知在三棱臺中,,,.(1)求證:;(2)過的平面分別交,于點,,且分割三棱臺所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.提示:臺體的體積公式(,分別為棱臺的上、下底面面積,為棱臺的高).20.(12分)設拋物線的焦點為,準線為,為拋物線過焦點的弦,已知以為直徑的圓與相切于點.(1)求的值及圓的方程;(2)設為上任意一點,過點作的切線,切點為,證明:.21.(12分)已知函數.(1)時,求不等式解集;(2)若的解集包含于,求a的取值范圍.22.(10分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
寫出展開式的通項公式,令,即,則可求系數.【詳解】的展開式的通項公式為,令,即時,系數為.故選C【點睛】本題考查二項式展開的通項公式,屬基礎題.2、B【解析】
由已知可求得函數的周期,根據周期及偶函數的對稱性可求在上的單調性,結合三角函數的性質即可比較.【詳解】由可得,即函數的周期,因為在區(qū)間上單調遞減,故函數在區(qū)間上單調遞減,根據偶函數的對稱性可知,在上單調遞增,因為,是銳角三角形的兩個內角,所以且即,所以即,.故選:.【點睛】本題主要考查函數值的大小比較,根據函數奇偶性和單調性之間的關系是解決本題的關鍵.3、D【解析】
與中間值1比較,可用換底公式化為同底數對數,再比較大小.【詳解】,,又,∴,即,∴.故選:D.【點睛】本題考查冪和對數的大小比較,解題時能化為同底的化為同底數冪比較,或化為同底數對數比較,若是不同類型的數,可借助中間值如0,1等比較.4、B【解析】
由目標函數的最大值為9,我們可以畫出滿足條件件為常數)的可行域,根據目標函數的解析式形式,分析取得最優(yōu)解的點的坐標,然后根據分析列出一個含參數的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數)可行域如下圖:由于目標函數的最大值為9,可得直線與直線的交點,使目標函數取得最大值,將,代入得:.故選:.【點睛】如果約束條件中含有參數,我們可以先畫出不含參數的幾個不等式對應的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數的方程(組,代入另一條直線方程,消去,后,即可求出參數的值.5、D【解析】
設正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內切球的半徑,在中,根據勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設內切球的半徑為,內切球的球心為,則,解得:;設外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎題.6、D【解析】
整理復數為的形式,由復數為純虛數可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數,所以,則,故選:D【點睛】本題考查已知復數的類型求參數范圍,考查復數的除法運算.7、B【解析】
由圓過原點,知中有一點與原點重合,作出圖形,由,,得,從而直線傾斜角為,寫出點坐標,代入拋物線方程求出參數,可得點坐標,從而得三角形面積.【詳解】由題意圓過原點,所以原點是圓與拋物線的一個交點,不妨設為,如圖,由于,,∴,∴,,∴點坐標為,代入拋物線方程得,,∴,.故選:B.【點睛】本題考查拋物線與圓相交問題,解題關鍵是發(fā)現原點是其中一個交點,從而是等腰直角三角形,于是可得點坐標,問題可解,如果僅從方程組角度研究兩曲線交點,恐怕難度會大大增加,甚至沒法求解.8、C【解析】
令,可得,要使得有兩個實數解,即和有兩個交點,結合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數解,即和有兩個交點,,令,可得,當時,,函數在上單調遞增;當時,,函數在上單調遞減.當時,,若直線和有兩個交點,則.實數的取值范圍是.故選:C.【點睛】本題主要考查了根據零點求參數范圍,解題關鍵是掌握根據零點個數求參數的解法和根據導數求單調性的步驟,考查了分析能力和計算能力,屬于中檔題.9、A【解析】
用排除法,通過函數圖像的性質逐個選項進行判斷,找出不符合函數解析式的圖像,最后剩下即為此函數的圖像.【詳解】設,由于,排除B選項;由于,所以,排除C選項;由于當時,,排除D選項.故A選項正確.故選:A【點睛】本題考查了函數圖像的性質,屬于中檔題.10、A【解析】
求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.11、D【解析】
寫出二項式的通項公式,再分析的系數求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數為.故選:D【點睛】本題主要考查了二項式定理的運算,屬于基礎題.12、B【解析】
利用復數的除法運算化簡z,復數在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數在復平面中對應的點到原點的距離為故選:B【點睛】本題考查了復數的除法運算,模長公式和幾何意義,考查了學生概念理解,數學運算,數形結合的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由求出,代入,進行數量積的運算即得.【詳解】,存在實數,使得.不共線,.,,,的夾角為30°,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數量積的運算,屬于基礎題.14、1【解析】
根據正態(tài)分布對稱性,求得質量低于的袋數的估計值.【詳解】由于,所以,所以袋牛肉干中,質量低于的袋數大約是袋.故答案為:【點睛】本小題主要考查正態(tài)分布對稱性的應用,屬于基礎題.15、【解析】
先求得時;再由可得時,兩式作差可得,進而求解.【詳解】當時,,解得;由,可知當時,,兩式相減,得,即,所以數列是首項為,公比為的等比數列,所以,故答案為:【點睛】本題考查由與的關系求通項公式,考查等比數列的通項公式的應用.16、【解析】
求出圓內接正十二邊形的面積和圓的面積,再用幾何概型公式求出即可.【詳解】半徑為1的圓內接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,∴該正十二邊形的面積為,根據幾何概型公式,該點取自其內接正十二邊形的概率為,故答案為:.【點睛】本小題主要考查面積型幾何概型的計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)證明平面即平面平面得證;(2)分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標系C-xyz,再利用向量方法求二面角的余弦值.【詳解】(1)證明:因為平面ABC,所以因為.所以.即又.所以平面因為平面.所以平面平面(2)解:由題可得兩兩垂直,所以分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標系C-xyz,則,所以設平面的一個法向量為,由.得令,得又平面,所以平面的一個法向量為.所以二面角的余弦值為.【點睛】本題主要考查空間幾何位置關系的證明,考查二面角的計算,意在考查學生對這些知識的理解掌握水平.18、(1)x24+【解析】試題分析:本題主要考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標準方程;第二問,討論直線MN的斜率是否存在,當直線MN的斜率存在時,直線方程與橢圓方程聯(lián)立,消參,利用韋達定理,得到x1+x2、x1x試題解析:(1)∵e=22,??∴又S=12×2a×2b=4∴橢圓C的標準方程為x2(2)由題意知,當直線MN斜率存在時,設直線方程為y=k(x-1),M(x聯(lián)立方程x24+因為直線與橢圓交于兩點,所以Δ=16k∴x又∵OM∴因為點P在橢圓x24+即2k又∵|OM即|NM|<4化簡得:13k4-5k2∵t2=1-當直線MN的斜率不存在時,M(1,??62∴t∈[-1,??考點:橢圓的標準方程及其幾何性質、直線與橢圓的位置關系.19、(1)證明見解析;(2)2【解析】
(1)在中,利用勾股定理,證得,又由題設條件,得到,利用線面垂直的判定定理,證得平面,進而得到;(2)設三棱臺和三棱柱的高都為上、下底面之間的距離為,根據棱臺的體積公式,列出方程求得,得到,即可求解.【詳解】(1)由題意,在中,,,所以,可得,因為,可得.又由,,平面,所以平面,因為平面,所以.(2)因為,可得,令,,設三棱臺和三棱柱的高都為上、下底面之間的距離為,則,整理得,即,解得,即,又由,所以.【點睛】本題主要考查了直線與平面垂直的判定與應用,以及幾何體的體積公式的應用,其中解答中熟記線面位置關系的判定定理與性質定理,以及熟練應用幾何體的體積公式進行求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.20、(1)2,;(2)證明見解析.【解析】
(1)由題意得的方程為,根據為拋物線過焦點的弦,以為直徑的圓與相切于點..利用拋物線和圓的對稱性,可得,圓心為,半徑為2.(2)設,的方程為,代入的方程,得,根據直線與拋物線相切,令,得,代入,解得.將代入的方程,得,得到點N的坐標為,然后求解.【詳解】(1)解:由題意得的方程為,所以,解得.又由拋物線和圓的對稱性可知,所求圓的圓心為,半徑為2.所以圓的方程為.(2)證明:易知直線的斜率存在且不為0,設,的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點N的坐標為,所以,,故.【點睛】本題主要考查拋物線的定義幾何性質以及直線與拋物線的位置關系,還考查了數形結合的思想和運算求解的能力,屬于中檔題.21、(1)(2)【解析】
(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年園區(qū)企業(yè)入駐協(xié)議樣本版
- 蔬菜合伙經營合同模板
- 鋁材定制加工合同模板
- 河南省部分學校2024-2025學年高一上學期選科考試生物試題
- 露臺房源出售合同模板
- 車站標識標牌采購合同模板
- 集體照拍攝合同模板
- 解除工作合同模板
- 銷售野生河豚合同模板
- 管道維護合同模板
- 《讓我們的學校更美好》課件ppt
- JTGT-3833-2018-公路工程機械臺班費用定額
- 療效精油輕圖典
- 工業(yè)機器人的手部-末端執(zhí)行器 課件
- 數學課堂如何提高學生的學習主動性
- 工務勞安培訓課件
- 初中英語新課程標準及教材分析省一等獎課件
- 音樂治療專業(yè)培養(yǎng)方案
- 莎士比亞在近現代中國的接受-河南大學中國大學mooc課后章節(jié)答案期末考試題庫2023年
- 車間機修工績效考核細則制度
- 失讀癥、失寫癥的評定與康復課件
評論
0/150
提交評論