2023年鄭州財稅金融職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年鄭州財稅金融職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年鄭州財稅金融職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年鄭州財稅金融職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年鄭州財稅金融職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩37頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年鄭州財稅金融職業(yè)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.已知點P的坐標為(3,4,5),試在空間直角坐標系中作出點P.答案:由P(3,4,5)可知點P在Ox軸上的射影為A(3,0,0),在Oy軸上射影為B(0,4,0),以OA,OB為鄰邊的矩形OACB的頂點C是點P在xOy坐標平面上的射影C(3,4,0).過C作直線垂直于xOy坐標平面,并在此直線的xOy平面上方截取5個單位,得到的就是點P.2.若長方體的三個面的對角線長分別是a,b,c,則長方體體對角線長為()A.a(chǎn)2+b2+c2B.12a2+b2+c2C.22a2+b2+c2D.32a2+b2+c2答案:解析:設同一頂點的三條棱分別為x,y,z,則x2+y2=a2,y2+z2=b2,x2+z2=c2得x2+y2+z2=12(a2+b2+c2),則對角線長為12(a2+b2+c2)=22a2+b2+c2.故選C.3.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()

A.1

B.2

C.-2

D.-1答案:D4.已知A=(2,-4,-1),B=(-1,5,1),C=(3,-4,1),若=,=,則對應的點為()

A.(5,-9,2)

B.(-5,9,-2)

C.(5,9,-2)

D.(5,-9,-2)答案:B5.已知圓O:x2+y2=5和點A(1,2),則過A且與圓O相切的直線與兩坐標軸圍成的三角形的面積=______.答案:由題意知,點A在圓上,切線斜率為-1KOA=-121=-12,用點斜式可直接求出切線方程為:y-2=-12(x-1),即x+2y-5=0,從而求出在兩坐標軸上的截距分別是5和52,所以,所求面積為12×52×5=254.6.O是正六邊形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O為端點的向量中:

(1)與a相等的向量有

______;

(2)與b相等的向量有

______;

(3)與c相等的向量有

______.答案:如圖,在O是正六邊形ABCDE的中心,以A,B,C,D,E,O為端點的向量中(1)與a相等的向量有EF,DO,CB;(2)與b相等的向量有DC,EO,F(xiàn)A;(3)與c相等的向量有FO,OC,ED.故三個空依次應填EF,DO,CB;DC,EO,F(xiàn)A;FO,OC,ED.7.若實數(shù)X、少滿足,則的范圍是()

A.[0,4]

B.(0,4)

C.(-∝,0]U[4,+∝)

D.(-∝,0)U(4,+∝))答案:D8.3i(1+i)2的虛部等于______.答案:3i(1+i)2=2,所以其虛部等于0,故為09.點P,設△ABC的面積是△PBC的面積的m倍,那么m=()

A.1

B.

C.4

D.2答案:B10.在空間中,有如下命題:

①互相平行的兩條直線在同一個平面內(nèi)的射影必然是互相平行的兩條直線;

②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;

③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β.

其中正確命題的個數(shù)為()個.

A.0

B.1

C.2

D.3答案:B11.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據(jù)題意可知該循環(huán)體運行4次第一次:i=2,s=4,第二次:i=3,s=10,第三次:i=4,s=22,第四次:i=5,s=46,因為i=5>4,結(jié)束循環(huán),輸出結(jié)果S=46.故為:46.12.已知雙曲線x2-y23=1,過P(2,1)點作一直線交雙曲線于A、B兩點,并使P為AB的中點,則直線AB的斜率為______.答案:設A(x1,y1)、B(x2,y2),代入雙曲線方程x2-y23=1相減得直線AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故為:613.已知集合A滿足{1,2,3}∪A={1,2,3,4},則集合A的個數(shù)為______.答案:∵{1,2,3}∪A={1,2,3,4},∴A={4};{1,4};{2,4};{3,4};{1,2,4};{1,3,4};{2,3,4};{1,2,3,4},則集合A的個數(shù)為8.故為:814.口袋中裝有三個編號分別為1,2,3的小球,現(xiàn)從袋中隨機取球,每次取一個球,確定編號后放回,連續(xù)取球兩次.則“兩次取球中有3號球”的概率為()A.59B.49C.25D.12答案:每次取球時,出現(xiàn)3號球的概率為13,則兩次取得球都是3號求得概率為C22?(13)2=19,兩次取得球只有一次取得3號求得概率為C12?13?23=49,故“兩次取球中有3號球”的概率為19+49=59,故選A.15.如圖,半徑為R的球O中有一內(nèi)接圓柱.當圓柱的側(cè)面積最大時,球的表面積與該圓柱的側(cè)面積之差是______.

答案:設圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=Rcosα,圓柱的高為2Rsinα,圓柱的側(cè)面積為:2πR2sin2α,當且僅當α=π4時,sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:2πR2,球的表面積為:4πR2,球的表面積與該圓柱的側(cè)面積之差是:2πR2.故為:2πR216.橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為______.答案:方程x2+my2=1變?yōu)閤2+y21m=1∵焦點在y軸上,長軸長是短軸長的兩倍,∴1m=2,解得m=14故應填1417.下列說法:

①在殘差圖中,殘差點比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選擇的模型比較合適;

②用相關(guān)指數(shù)可以刻畫回歸的效果,值越大說明模型的擬和效果越好;

③比較兩個模型的擬和效果,可以比較殘差平方和的大小,殘差平方和越小的模型擬和效果越好.

其中說法正確的個數(shù)為()

A.0個

B.1個

C.2個

D.3個答案:C18.一動圓與兩圓x2+y2=1和x2+y2-8x+12=0都外切,則動圓圓心軌跡為()A.圓B.橢圓C.雙曲線的一支D.拋物線答案:設動圓的圓心為P,半徑為r,而圓x2+y2=1的圓心為O(0,0),半徑為1;圓x2+y2-8x+12=0的圓心為F(4,0),半徑為2.依題意得|PF|=2+r|,|PO|=1+r,則|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以點P的軌跡是雙曲線的一支.故選C.19.某簡單幾何體的三視圖如圖所示,其正視圖.側(cè)視圖.俯視圖均為直角三角形,面積分別是1,2,4,則這個幾何體的體積為()A.83B.43C.8D.4答案:由三視圖知幾何體是一個三棱錐,設出三棱錐的三條兩兩垂直的棱分別是x,y,z∴xy=2

①xz=4

②yz=8

③由①②得z=2y

④∴y=2∴以y為高的底面面積是2,∴三棱錐的體積是13×2×2=43故選B.20.離心率e=23,短軸長為85的橢圓標準方程為______.答案:離心率e=23,短軸長為85,所以ca=23;b=45又a2=b2+c2解得a2=144,b2=80所以橢圓標準方程為x2144+y280=1或y2144+x280=1故為x2144+y280=1或y2144+x280=121.設點P對應的復數(shù)為-3+3i,以原點為極點,實軸正半軸為極軸建立極坐標系,則點P的極坐標為()

A.(3,π)

B.(-3,π)

C.(3,π)

D.(-3,π)答案:A22.直線y=1與直線y=3x+3的夾角為______答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°23.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()

A.B與C互斥

B.A與C互斥

C.任意兩個事件均互斥

D.任意兩個事件均不互斥答案:B24.點P(2,5)關(guān)于直線x+y=1的對稱點的坐標是(

)。答案:(-4,-1)25.已知a>0,b>0,直線l與x軸、y軸分別交于A(a,0),B(0,b),且過點(1,2),O為原點.求△OAB面積的最小值.答案:∵a>0,b>0,直線l與x軸、y軸分別交于A(a,0),B(0,b),∴直線l的方程為xa+yb=1,又直線l過點(1,2),∴1a+2b=1,由基本不等式得1≥22ab,∴ab≥8,△OAB面積為:12ab≥12×8=4,當且僅當1a=2b=12,即a=2且b=4時,等號成立.故△OAB面積的最小值是4.26.定義直線關(guān)于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點A(3,0);②直線y=x關(guān)于圓C的圓心距單位λ=2,試寫出一個滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標為3,設圓心的縱坐標為r,則半徑為|r|>0,則圓心的坐標為(3,r).設圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=127.已知θ是三角形內(nèi)角且sinθ+cosθ=,則表示答案:C28.k取何值時,一元二次方程kx2+3kx+k=0的兩根為負。答案:解:∴k≤或k>329.若有以下說法:

①相等向量的模相等;

②若a和b都是單位向量,則a=b;

③對于任意的a和b,|a+b|≤|a|+|b|恒成立;

④若a∥b,c∥b,則a∥c.

其中正確的說法序號是()A.①③B.①④C.②③D.③④答案:根據(jù)定義,大小相等且方向相同的兩個向量相等.因此相等向量的模相等,故①正確;因為單位向量的模等于1,而方向不確定.所以若a和b都是單位向量,則不一定有a=b成立,故②不正確;根據(jù)向量加法的三角形法則,可得對于任意的a和b,都有|a+b|≤|a|+|b|成立,當且僅當a和b方向相同時等號成立,故③正確;若b=0,則有a∥b且c∥b,但是a∥c不成立,故④不正確.綜上所述,正確的命題是①③故選:A30.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,則λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故為;

11.31.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且滿足1對應的元素是4,則這樣的映射有()A.2個B.4個C.8個D.9個答案:∵滿足1對應的元素是4,集合A中還有兩個元素2和3,2可以和4對應,也可以和5對應,3可以和4對應,也可以和5對應,每個元素有兩種不同的對應,∴共有2×2=4種結(jié)果,故選B.32.已知平面上的向量PA、PB滿足|PA|2+|PB|2=4,|AB|=2,設向量PC=2PA+PB,則|PC|的最小值是

______.答案:|PA|2+|PB|2=4,|AB|=2∴|PA|2+|PB|2=|AB|2∴PA?PB=0∴PC2=4PA2+4PA?PB+PB2=3PA2+4≥4∴|PC|≥2故為2.33.一個凸多面體的各個面都是四邊形,它的頂點數(shù)是16,則它的面數(shù)為()

A.14

B.7

C.15

D.不能確定答案:A34.設,是互相垂直的單位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)則實數(shù)m為()

A.-2

B.2

C.-

D.不存在答案:A35.根據(jù)下列條件,求圓的方程:

(1)過點A(1,1),B(-1,3)且面積最?。?/p>

(2)圓心在直線2x-y-7=0上且與y軸交于點A(0,-4),B(0,-2).答案:(1)過A、B兩點且面積最小的圓就是以線段AB為直徑的圓,∴圓心坐標為(0,2),半徑r=12|AB|=12(-1+1)2+(1-3)2=12×8=2,∴所求圓的方程為x2+(y-2)2=2;(2)由圓與y軸交于點A(0,-4),B(0,-2)可知,圓心在直線y=-3上,由2x-y-7=0y=-3,解得x=2y=-3,∴圓心坐標為(2,-3),半徑r=5,∴所求圓的方程為(x-2)2+(y+3)2=5.36.電子手表廠生產(chǎn)某批電子手表正品率為,次品率為,現(xiàn)對該批電子手表進行測試,設第X次首次測到正品,則P(1≤X≤2013)等于()

A.1-()2012

B.1-()2013

C.1-()2012

D.1-()2013答案:B37.如圖,△ABC是圓的內(nèi)接三角形,PA切圓于點A,PB交圓于點D.若∠ABC=60°,PD=1,BD=8,則∠PAC=______°,PA=______.答案:∵PD=1,BD=8,∴PB=PD+BD=9由切割線定理得PA2=PD?PB=9∴PA=3又∵PE=PA∴PE=3又∠PAC=∠ABC=60°故:60,338.下列程序表示的算法是輾轉(zhuǎn)相除法,請在空白處填上相應語句:

(1)處填______;

(2)處填______.答案:∵程序表示的算法是輾轉(zhuǎn)相除法,根據(jù)輾轉(zhuǎn)相除法,先求出m除以n的余數(shù),然后利用輾轉(zhuǎn)相除法,將n的值賦給m,將余數(shù)賦給n,一直算到余數(shù)為零時m的值即可,∴(1)處應該為r=mMODn;(2)處應該為r=0.故為r=mMODn;r=0.39.化簡:AB+CD+BC=______.答案:如圖:AB+CD+BC=AB+BC+CD=AC+CD=AD.故為:AD.40.當圓x=4cosθy=4sinθ上一點P的旋轉(zhuǎn)角為θ=23π時,點P的坐標為______.答案:根據(jù)圓的參數(shù)方程的意義,當圓x=4cosθy=4sinθ上一點P的旋轉(zhuǎn)角為θ=23π時,點P的坐標為(4cos2π3,4sin2π3),即(-2,23).故為:(-2,23).41.為了調(diào)查某產(chǎn)品的銷售情況,銷售部門從下屬的92家銷售連鎖店中抽取30家了解情況.若用系統(tǒng)抽樣法,則抽樣間隔和隨機剔除的個體數(shù)分別為()

A.3,2

B.2,3

C.2,30

D.30,2答案:A42.△ABC中,∠A外角的平分線與此三角形外接圓相交于P,求證:BP=CP.

答案:證明:∠CBP=∠CAP=∠PAD又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP=∠BCP+∠CBP∴∠BCP=∠CBP,∴BP=CP.43.在空間直角坐標系中,點,過點P作平面xOy的垂線PQ,則Q的坐標為()

A.

B.

C.

D.答案:D44.設函數(shù)f(x)=(1-2a)x+b是R上的增函數(shù),則()A.a(chǎn)>12B.a(chǎn)<12C.a(chǎn)≥12D.a(chǎn)≤12答案:∵函數(shù)f(x)=(1-2a)x+b是R上的增函數(shù),∴1-2a>0,∴a<12.故選B.45.“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結(jié)論)”,上面推理的錯誤是()

A.大前提錯導致結(jié)論錯

B.小前提錯導致結(jié)論錯

C.推理形式錯導致結(jié)論錯

D.大前提和小前提錯都導致結(jié)論錯答案:A46.證明:等腰三角形底邊上任意一點到兩腰的距離之和等于一腰上的高.答案:證明見解析:建立如圖所示的直角坐標系.設,,其中,.則直線的方程為,直線的方程為.設底邊上任意一點為,則到的距離;到的距離;到的距離.因為,所以,結(jié)論成立.47.某學校準備調(diào)查高三年級學生完成課后作業(yè)所需時間,采取了兩種抽樣調(diào)查的方式:第一種由學生會的同學隨機對24名同學進行調(diào)查;第二種由教務處對年級的240名學生編號,由001到240,請學號最后一位為3的同學參加調(diào)查,則這兩種抽樣方式依次為()A.分層抽樣,簡單隨機抽樣B.簡單隨機抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機抽樣,系統(tǒng)抽樣答案:學生會的同學隨機對24名同學進行調(diào)查,是簡單隨機抽樣,對年級的240名學生編號,由001到240,請學號最后一位為3的同學參加調(diào)查,是系統(tǒng)抽樣,故選D48.己知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B中元素y=3x+1和A中的元素x對應,則a=______,k=______.答案:若x∈A,y∈B,使B中元素y=3x+1和A中的元素x對應,則當x=1時,y=4;當x=2時,y=7;當x=3時,y=10;當x=k時,y=3k+1;又由a∈N*,∴a4≠10,則a2+3a=10,a4=3k+1解得a=2,k=5故為:2,549.若向量、、滿足++=,=3,=1,=4,則等于(

A.-11

B.-12

C.-13

D.-14答案:C50.已知向量p=a|a|+2b|b|,其中a、b均為非零向量,則|p|的取值范圍是

______.答案:∵|a|a||=1,|2b|b||=2

∴p2=|p|2=1+4+4a|a|?b|b|?cos<a|a|,2b|b|>=5+4?cos<a|a|,2b|b|>∈[1,9],開方可得

|p|的取值范圍[1,3],故為[1,3].第2卷一.綜合題(共50題)1.某小組有3名女生、4名男生,從中選出3名代表,要求至少女生與男生各有一名,共有______種不同的選法.(要求用數(shù)字作答)答案:由題意知本題是一個分類計數(shù)問題,要求至少女生與男生各有一名有兩個種不同的結(jié)果,即一個女生兩個男生和一個男生兩個女生,∴共有C31C42+C32C41=30種結(jié)果,故為:302.如圖,已知雙曲線以長方形ABCD的頂點A,B為左、右焦點,且過C,D兩頂點.若AB=4,BC=3,則此雙曲線的標準方程為______.答案:由題意可得點OA=OB=2,AC=5設雙曲線的標準方程是x2a2-y2b2=1.則2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以雙曲線的標準方程是x2-y23=1.故為:x2-y23=13.設α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個實根,當m為何值時,α2+β2有最小值?并求出這個最小值.答案:若α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個實根則△=16m2-16(m+2)≥0,即m≤-1,或m≥2則α+β=m,α×β=m+24,則α2+β2=(α+β)2-2αβ=m2-2×m+24=m2-12m-1=(m-14)2-1716∴當m=-1時,α2+β2有最小值,最小值是12.4.已知一物體在共點力F1=(lg2,lg2),F(xiàn)2=(lg5,lg2)的作用下產(chǎn)生位移S=(2lg5,1),則這兩個共點力對物體做的總功W為()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共點力的作用下產(chǎn)生位移S=(2lg5,1)∴這兩個共點力對物體做的總功W為(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故選B5.在(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項的系數(shù)是______.(用數(shù)字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項的系數(shù)是C31+C41+C51+…+C71=25故為:256.編程序,求和s=1!+2!+3!+…+20!答案:s=0n=1t=1WHILE

n<=20s=s+tn=n+1t=t*nWENDPRINT

sEND7.直線3x+4y-12=0和3x+4y+3=0間的距離是

______.答案:由兩平行線間的距離公式得直線3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.8.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個大于1.答案:證明:用反證法,假設x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個大于1,即原命題得證.9.化簡5(2a-2b)+4(2b-2a)=______.答案:5(2a-2b)+4(2b-2a)=10a-10b+8b-8a=2a-2b故為:2a-2b10.已知M(-2,7)、N(10,-2),點P是線段MN上的點,且PN=-2PM,則P點的坐標為______.答案:設P(x,y),則PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P點的坐標為(2,4).故為:(2,4)11.質(zhì)地均勻的正四面體玩具的4個面上分別刻著數(shù)字1,2,3,4,將4個這樣的玩具同時拋擲于桌面上.

(1)求與桌面接觸的4個面上的4個數(shù)的乘積不能被4整除的概率;

(2)設ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個數(shù)均為奇數(shù),概率為P1=(12)4=116②4個數(shù)中有3個奇數(shù),另一個為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項分布B(4,12),∴Eξ=4×12=2.12.過橢圓4x2+y2=1的一個焦點F1的直線與橢圓交于A,B兩點,則A與B和橢圓的另一個焦點F1構(gòu)成的△ABF2的周長為()

A.2

B.2

C.4

D.8答案:C13.用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么b、c中至少有一個偶數(shù)時,下列假設正確的是()

A.假設a、b、c都是偶數(shù)

B.假設a、b、c都不是偶數(shù)

C.假設a、b、c至多有一個偶數(shù)

D.假設a、b、c至多有兩個偶數(shù)答案:B14.兩封信隨機投入A、B、C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學期望Eξ=______;答案:由題意知ξ的取值有0,1,2,當ξ=0時,即A郵箱的信件數(shù)為0,由分步計數(shù)原理知兩封信隨機投入A、B、C三個空郵箱,共有3×3種結(jié)果,而滿足條件的A郵箱的信件數(shù)為0的結(jié)果數(shù)是2×2,由古典概型公式得到ξ=0時的概率,同理可得ξ=1時,ξ=2時,ξ=3時的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故為:23.15.已知二元一次方程組a1x+b1y=c1a2x+b2y=c2的增廣矩陣是1-11113,則此方程組的解是______.答案:由題意,方程組

x-

y=1x+y=3解之得x=2y=1故為x=2y=116.若向量a、b的夾角為150°,|a|=3,|b|=4,則|2a+b|=______.答案:|2a+b|=(2a+b)2=4a2+b2+4a?b=12+16+4×3×4×cos150°=2.故為:217.若關(guān)于x的方程x2+ax+a2-1=0有一正根和一負根,則a的取值范圍為______.答案:令f(x)=x2+ax+a2-1,∴二次函數(shù)開口向上,若方程有一正一負根,則只需f(0)<0,即a2-1<0,∴-1<a<1.故為:-1<a<1.18.某飲料公司招聘了一名員工,現(xiàn)對其進行一項測試,以便確定工資級別.公司準備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料.若4杯都選對,則月工資定位3500元;若4杯選對3杯,則月工資定為2800元,否則月工資定為2100元,今X表示此人選對A飲料的杯數(shù),假設此人對A和B兩種飲料沒有鑒別能力.

(1)求X的分布列;

(2)求此員工月工資的期望.答案:(1)X的所有可能取值為0,1,2,3,4,P(X=0)=1C48=170P(X=1)=C14C34C48=1670P(X=2)=C24C24C48=3670P(X=3)=C14C34C48=1670P(X=4)=1C48=170(2)此員工月工資Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)=1C48=170P(Y=2800)=P(X=3)=C14C34C48=1670P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=5370EY=3500×170+2800×1670+2100×5370=228019.設x>0,y>0且x≠y,求證答案:證明略解析:由x>0,y>0且x≠y,要證明只需

即只需由條件,顯然成立.∴原不等式成立20.將參數(shù)方程x=1+2cosθy=2sinθ(θ為參數(shù))化成普通方程為

______.答案:由題意得,x=1+2cosθy=2sinθ?x-1=2cosθy=2sinθ,將參數(shù)方程的兩個等式兩邊分別平方,再相加,即可消去含θ的項,所以有(x-1)2+y2=4.21.已知直線l:ax+by=1(ab>0)經(jīng)過點P(1,4),則l在兩坐標軸上的截距之和的最小值是______.答案:∵直線l:ax+by=1(ab>0)經(jīng)過點P(1,4),∴a+4b=1,故a、b都是正數(shù).故直線l:ax+by=1,此直線在x、y軸上的截距分別為1a、1b,則l在兩坐標軸上的截距之和為1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,當且僅當4ba=ab時,取等號,故為9.22.直線x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長為______.答案:∵直線x=2-12ty=-1+12t(t為參數(shù))∴直線的普通方程為x+y-1=0圓心到直線的距離為d=12=22,l=24-(22)2=14,故為:14.23.在吸煙與患肺病這兩個分類變量的計算中,“若x2的觀測值為6.635,我們有99%的把握認為吸煙與患肺病有關(guān)系”這句話的意思是指()

A.在100個吸煙的人中,必有99個人患肺病

B.有1%的可能性認為推理出現(xiàn)錯誤

C.若某人吸煙,則他有99%的可能性患有肺病

D.若某人患肺病,則99%是因為吸煙答案:B24.△ABC中,若有一個內(nèi)角不小于120°,求證:最長邊與最短邊之比不小于3.答案:設最大角為∠A,最小角為∠C,則最大邊為a,最小邊為c因為A≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.25.已知點P為△ABC所在平面上的一點,且,其中t為實數(shù),若點P落在△ABC的內(nèi)部,則t的取值范圍是()

A.

B.

C.

D.答案:D26.求下列函數(shù)的定義域及值域.

(1)y=234x+1;

(2)y=4-8x.答案:(1)要使函數(shù)y=234x+1有意義,只需4x+1≠0,即x≠-14,所以,函數(shù)的定義域為{x|x≠-14}.設y=2u,u=34x+1≠0,則u>0,由函數(shù)y=2u,得y≠20=1,所以函數(shù)的值域為{y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函數(shù)的定義域為{x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以函數(shù)的值域為[0,2).27.若21-i=a+bi(i為虛數(shù)單位,a,b∈R),則a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故為:228.已知三個向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:實數(shù)λ,μ,使p=λq+μr,則a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在實數(shù),,使p=λq+μr,故向量p、q、r共面.29.已知x、y的取值如下表所示:

x0134y2.24.34.86.7若從散點圖分析,y與x線性相關(guān),且

y=0.95x+

a,則

a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴這組數(shù)據(jù)的樣本中心點是(2,4.5)∵y與x線性相關(guān),且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故選A.30.(不等式選講選做題)

已知實數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為______.答案:因為a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當ay=bx時取等號,所以ax+by的最大值為3.故為:3.31.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F(xiàn)分別為AD,BC上點,且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為______.答案:∵E,F(xiàn)分別為AD,BC上點,且EF=3,EF∥AB,∴EF是梯形的中位線,設兩個梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:532.某細胞在培養(yǎng)過程中,每15分鐘分裂一次(由1個細胞分裂成2個),則經(jīng)過兩個小時后,1個這樣的細胞可以分裂成______個.答案:由于每15分鐘分裂一次,則兩個小時共分裂8次.一個這樣的細胞經(jīng)過一次分裂后,由1個分裂成2個;經(jīng)過2次分裂后,由1個分裂成22個;…經(jīng)過8次分裂后,由1個分裂成28個.∴1個這樣的細胞經(jīng)過兩個小時后,共分裂成28個,即256個.故為:25633.若=(2,0),那么=(

A.(1,2)

B.3

C.2

D.1答案:C34.拋物線C:y=x2上兩點M、N滿足MN=12MP,若OP=(0,-2),則|MN|=______.答案:設M(x1,x12),N(x2,x22),則MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因為MN=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,聯(lián)立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故為10.35.如圖,AB,CD是半徑為a的圓O的兩條弦,他們相交于AB的中點P,PD=2a3,∠OAP=30°,則CP=______.答案:因為點P是AB的中點,由垂徑定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.36.已知直線y=kx+1與橢圓x25+y2m=1恒有公共點,則實數(shù)m的取值范圍為()A.m≥1B.m≥1,或0<m<1C.0<m<5,且m≠1D.m≥1,且m≠5答案:由于直線y=kx+1恒過點M(0,1)要使直線y=kx+1與橢圓x25+y2m=1恒有公共點,則只要M(0,1)在橢圓的內(nèi)部或在橢圓上從而有m>0m≠505+1m≤1,解可得m≥1且m≠5故選D.37.用數(shù)學歸納法證明:

對于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3.答案:證明:(1)當n=1時,左邊=12+1=2,右邊=1×2×33=2,所以當n=1時,命題成立;

…(2分)(2)設n=k時,命題成立,即有(12+1)+(22+2)+…+(k2+k)=k(k+1)(k+2)3…(4分)則當n=k+1時,左邊=(12+1)+(22+2)+…+(k2+k)+[(k+1)2+(k+1)]…(5分)=k(k+1)(k+2)3+[(k+1)2+(k+1)]=(k+1)[k(k+2)+3(k+1)+3]3…(8分)=(k+1)(k2+5k+6)3=(k+1)(k+2)(k+3)3=(k+1)[(k+1)+1][(k+1)+2]3…(10分)所以當n=k+1時,命題成立.綜合(1)(2)得:對于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3…(12分)38.已知O、A、M、B為平面上四點,且,則()

A.點M在線段AB上

B.點B在線段AM上

C.點A在線段BM上

D.O、A、M、B四點一定共線答案:B39.極坐標方程pcosθ=表示()

A.一條平行于x軸的直線

B.一條垂直于x軸的直線

C.一個圓

D.一條拋物線答案:B40.若直線l與直線2x+5y-1=0垂直,則直線l的方向向量為______.答案:直線l與直線2x+5y-1=0垂直,所以直線l:5x-2y+k=0,所以直線l的方向向量為:(2,5).故為:(2,5)41.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標準方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標準方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.42.下列說法不正確的是()A.圓柱側(cè)面展開圖是一個矩形B.圓錐的過軸的截面是等腰三角形C.直角三角形繞它的一條邊旋轉(zhuǎn)一周形成的曲面圍成的幾何體是圓錐D.圓臺平行于底面的截面是圓面答案:圓柱的側(cè)面展開圖是一個矩形,A正確,因為母線長相等,得到圓錐的軸截面是一個等腰三角形,B正確,圓臺平行于底面的截面是圓面,D正確,故選C.43.讀下面的程序:

上面的程序在執(zhí)行時如果輸入6,那么輸出的結(jié)果為()

A.6

B.720

C.120

D.1答案:B44.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是()A.

B.

C.

D.

答案:根據(jù)函數(shù)的定義知:自變量取唯一值時,因變量(函數(shù))有且只有唯一值與其相對應.∴從圖象上看,任意一條與x軸垂直的直線與函數(shù)圖象的交點最多只能有一個交點.從而排除A,B,C,故選D.45.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,抽取了總成績介于350分到650分之間的10000名學生成績,并根據(jù)這10000名學生的總成績畫了樣本的頻率分布直方圖.為了進一步分析學生的總成績與各科成績等方面的關(guān)系,要從這10000名學生中,再用分層抽樣方法抽出200人作進一步調(diào)查,則總成績在[400,500)內(nèi)共抽出()

A.100人

B.90人

C.65人

D.50人

答案:B46.設定義域為[x1,x2]的函數(shù)y=f(x)的圖象為C,圖象的兩個端點分別為A、B,點O為坐標原點,點M是C上任意一點,向量OA=(x1,y1),OB=(x2,y2),OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),又有向量ON=λOA+(1-λ)OB,現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標準k下線性近似”是指|MN|≤k恒成立,其中k>0,k為常數(shù).根據(jù)上面的表述,給出下列結(jié)論:

①A、B、N三點共線;

②直線MN的方向向量可以為a=(0,1);

③“函數(shù)y=5x2在[0,1]上可在標準1下線性近似”;

④“函數(shù)y=5x2在[0,1]上可在標準54下線性近似”.

其中所有正確結(jié)論的番號為______.答案:由ON=λOA+(1-λ)OB,得ON-OB=λ(OA-OB),即BN=λBA故①成立;∵向量OA=(x1,y1),OB=(x2,y2),向量ON=λOA+(1-λ)OB,∴向量ON的橫坐標為λx1+(1-λ)x2(0<λ<1),∵OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),∴MN∥y軸∴直線MN的方向向量可以為a=(0,1),故②成立對于函數(shù)y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),從而|MN|=52(1-λ)2-(1-λ))2=25[(λ-12)2+14]2≤54,故函數(shù)y=5x2在[0,1]上可在標準54下線性近似”,故④成立,③不成立,故為:①②④47.已知的單調(diào)區(qū)間;

(2)若答案:(1)(2)證明略解析:(1)對已知函數(shù)進行降次分項變形

,得,(2)首先證明任意事實上,而

.48.如圖所示,判斷正整數(shù)x是奇數(shù)還是偶數(shù),(1)處應填______.答案:根據(jù)程序的功能是判斷正整數(shù)x是奇數(shù)還是偶數(shù),結(jié)合數(shù)的奇偶性的定義,我們可得當滿足條件是x是奇數(shù),不滿足條件時x為偶數(shù)故(1)中應填寫r=1故為:r=149.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,則()

A.∠PCB=∠B

B.∠PAC=∠P

C.∠PCA=∠B

D.∠PAC=∠BCA答案:C50.已知命題p:“△ABC是等腰三角形”,命題q:“△ABC是直角三角形”,則命題“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不對答案:因為“△ABC是等腰直角三角形”即為“△ABC是等腰且直角三角形”,所以命題“△ABC是等腰直角三角形”的形式是p且q,故選B.第3卷一.綜合題(共50題)1.方程.12

41x

x21-3

9.=0的解集為______.答案:.12

41x

x21-3

9.=9x+2x2-12-4x+3x2-18=0,即x2+x-6=0,故x1=-3,x2=2.故方程的解集為{-3,2}.2.設雙曲線的兩條漸近線為y=±x,則該雙曲線的離心率e為()

A.5

B.或

C.或

D.答案:C3.直線L1:x-y=0與直線L2:x+y-10=0的交點坐標是()

A.(5,5)

B.(5,-5)

C.(-1,1)

D.(1,1)答案:A4.下圖是由A、B、C、D中的哪個平面圖旋轉(zhuǎn)而得到的(

)答案:A5.下列說法中正確的是()

A.以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐

B.以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺

C.圓柱、圓錐、圓臺的底面都是圓

D.圓錐側(cè)面展開圖為扇形,這個扇形所在圓的半徑等于圓錐的底面圓的半徑答案:C6.下列圖形中不一定是平面圖形的是()

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B7.“a=18”是“對任意的正數(shù)x,2x+ax≥1的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當“a=18”時,由基本不等式可得:“對任意的正數(shù)x,2x+ax≥1”一定成立,即“a=18”?“對任意的正數(shù)x,2x+ax≥1”為真命題;而“對任意的正數(shù)x,2x+ax≥1的”時,可得“a≥18”即“對任意的正數(shù)x,2x+ax≥1”?“a=18”為假命題;故“a=18”是“對任意的正數(shù)x,2x+ax≥1的”充分不必要條件故選A8.有一個質(zhì)地均勻的正四面體,它的四個面上分別標有1,2,3,4這四個數(shù)字.現(xiàn)將它連續(xù)拋擲3次,其底面落于桌面,記三次在正四面體底面的數(shù)字和為S,則“S恰好為4”的概率為______.答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件是拋擲這顆正四面體骰子兩次,共有4×4×4=64種結(jié)果,滿足條件的事件是三次在正四面體底面的數(shù)字和為S,S恰好為4,可以列舉出這種事件,(1,1,2),(1,2,1),(2,1,1)共有3種結(jié)果,根據(jù)古典概型概率公式得到P=364,故為:364.9.已知f(10x)=x,則f(5)=______.答案:令10x=5可得x=lg5所以f(5)=f(10lg5)=lg5故為:lg510.已知全集U=R,A?U,B?U,如果命題P:2∈A∪B,則命題非P是()A.2?AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命題P:2∈A∪B,∴┐p為2∈(CUA)∩(CUB)故選C11.函數(shù)y=ax+b與y=logbx且a>0,在同一坐標系內(nèi)的圖象是()A.

B.

C.

D.

答案:∵a>0,則函數(shù)y=ax+b為增函數(shù),與y軸的交點為(0,b)當0<b<1時,函數(shù)y=ax+b與y軸的交點在原點和(0,1)點之間,y=logbx為減函數(shù),D圖滿足要求;當b>1時,函數(shù)y=ax+b與y軸的交點在(0,1)點上方,y=logbx為增函數(shù),不存在滿足條件的圖象;故選D12.如圖,已知△ABC,過頂點A的圓與邊BC切于BC的中點P,與邊AB、AC分別交于點M、N,且CN=2BM,點N平分AC.則AM:BM=()

A.2

B.4

C.6

D.7

答案:D13.x+y+z=1,則2x2+3y2+z2的最小值為()

A.1

B.

C.

D.答案:C14.若直線過點(1,2),(),則此直線的傾斜角是()

A.60°

B.45°

C.30°

D.90°答案:C15.圓x2+y2=1在矩陣A={}對應的變換下,得到的曲線的方程是()

A.=1

B.=1

C.=1

D.=1答案:C16.已知球的表面積等于16π,圓臺上、下底面圓周都在球面上,且下底面過球心,圓臺的軸截面的底角為π3,則圓臺的軸截面的面積是()A.9πB.332C.33D.6答案:設球的半徑為R,由題意4πR2=16,R=2,圓臺的軸截面的底角為π3,可得圓臺母線長為2,上底面半徑為1,圓臺的高為3,所以圓臺的軸截面的面積S=12(2+4)×3=33故選C17.為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號依次為1到50的袋裝奶粉中抽取5袋進行檢驗,用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號可能是()

A.5,10,15,20,25

B.2,4,8,16,32

C.1,2,3,4,5

D.7,17,27,37,47答案:D18.扇形周長為10,則扇形面積的最大值是()A.52B.254C.252D.102答案:設半徑為r,弧長為l,則周長為2r+l=10,面積為s=12lr,因為10=2r+l≥22rl,所以rl≤252,所以s≤254故選B19.若不等式logax>sin2x(a>0,a≠1)對任意x∈(0,π4)都成立,則a的取值范圍是()A.(0,π4)B.(π4,1)C.(π4,π2)D.(0,1)答案:∵當x∈(0,π4)時,函數(shù)y=logax的圖象要恒在函數(shù)y=sin2x圖象的上方∴0<a<1如右圖所示當y=logax的圖象過點(π4,1)時,a=π4,然后它只能向右旋轉(zhuǎn),此時a在增大,但是不能大于1故選B.20.以下關(guān)于排序的說法中,正確的是(

)A.排序就是將數(shù)按從小到大的順序排序B.排序只有兩種方法,即直接插入排序和冒泡排序C.用冒泡排序把一列數(shù)從小到大排序時,最小的數(shù)逐趟向上漂浮D.用冒泡排序把一列數(shù)從小到大排序時,最大的數(shù)逐趟向上漂浮答案:C解析:由冒泡排序的特點知C正確.21.下列哪組中的兩個函數(shù)是同一函數(shù)()A.y=(x)2與y=xB.y=(3x)3與y=xC.y=x2與y=(x)2D.y=3x3與y=x2x答案:A、y=x與y=x2的定義域不同,故不是同一函數(shù).B、y=(3x)3=x與y=x的對應關(guān)系相同,定義域為R,故是同一函數(shù).C、fy=x2與y=(x)2的定義域不同,故不是同一函數(shù).D、y=3x3與y=x2x

具的定義域不同,故不是同一函數(shù).故選B.22.根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/100mL(含80)以上時,屬醉酒駕車.據(jù)有關(guān)報道,2009年8月15日至8

月28日,某地區(qū)查處酒后駕車和醉酒駕車共500人,如圖是對這500人血液中酒精含量進行檢測所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為()A.25B.50C.75D.100答案:∵血液酒精濃度在80mg/100ml(含80)以上時,屬醉酒駕車,通過頻率分步直方圖知道屬于醉駕的頻率是(0.005+0.01)×10=0.15,∵樣本容量是500,∴醉駕的人數(shù)有500×0.15=75故選C.23.命題“若A∩B=A,則A∪B=B”的逆否命題是()A.若A∪B=B,則A∩B=AB.若A∩B≠A,則A∪B≠BC.若A∪B≠B,則A∩B≠AD.若A∪B≠B,則A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命題“若A∩B=A,則A∪B=B”的逆否命題是“若A∪B≠B,則A∩B≠A”.故選C.24.已知向量a與向量b的夾角為120°,若向量c=a+b,且a⊥c,則|a||b|的值為______.答案:由題意可知,∵a⊥c,∴a?c=a?(a+b)=a2+a?b=0即|a|2+|a||b|cos120°=0,故|a|2=12|a||b|,故|a||b|=12.故為:1225.圓的極坐標方程為ρ=2cos(θ+π3),則該圓的圓心的極坐標是______.答案:∵ρ=2cos(θ+π3),展開得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圓心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圓心的極坐標是(1,-π3).故為(1,-π3).26.點(1,2)到直線x+2y+5=0的距離為______.答案:點(1,2)到直線x+2y+5=0的距離為d=|1+2×2+5|12+22=25故為:2527.已知圓的極坐標方程為:ρ2-42ρcos(θ-π4)+6=0.

(1)將極坐標方程化為普通方程;

(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圓的參數(shù)方程為x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.28.位于直角坐標原點的一個質(zhì)點P按下列規(guī)則移動:質(zhì)點每次移動一個單位,移動的方向向左或向右,并且向左移動的概率為,向右移動的概率為,則質(zhì)點P移動五次后位于點(1,0)的概率是()

A.

B.

C.

D.答案:D29.已知某人在某種條件下射擊命中的概率是,他連續(xù)射擊兩次,其中恰有一次射中的概率是()

A.

B.

C.

D.答案:C30.直線(t為參數(shù))和圓x2+y2=16交于A,B兩點,則AB的中點坐標為()

A.(3,-3)

B.(-,3)

C.(,-3)

D.(3,-)答案:D31.設O是坐標原點,F(xiàn)是拋物線y2=2px(p>0)的焦點,A是拋物線上的一點,F(xiàn)A與x軸正向的夾角為60°,則|OA|為______.答案:過A作AD⊥x軸于D,令FD=m,則FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故為:212p32.已知f(x)=,若f(x0)>1,則x0的取值范圍是()

A.(0,1)

B.(-∞,0)∪(0,+∞)

C.(-∞,0)∪(1,+∞)

D.(1,+∞)答案:C33.已知直線l過點P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點,O為坐標原點,則三角形OAB面積的最小值為______.答案:設A(a,0)、B(0,b),a>0,b>0,AB方程為xa+

yb=1,點P(2,1)代入得2a+1b=1≥22ab,∴ab≥8

(當且僅當a=4,b=2時,等號成立),故三角形OAB面積S=12

ab≥4,故為4.34.已知隨機變量x服從二項分布x~B(6,),則P(x=2)=()

A.

B.

C.

D.答案:D35.已知函數(shù)f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),則實數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,

x<0,x<0時是常函數(shù),x≥0時是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.36.向量在基底{,,}下的坐標為(1,2,3),則向量在基底{}下的坐標為()

A.(3,4,5)

B.(0,1,2)

C.(1,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論