版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年湖南九嶷職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,連接DB,若∠D=20°,則∠DBE的大小為()
A.20°
B.40°
C.60°
D.70°答案:D2.圓x2+y2=1上的點(diǎn)到直線x=2的距離的最大值是
______.答案:根據(jù)題意,圓上點(diǎn)到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:33.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個相同的零點(diǎn),則f(0)與f(1)()
A.均為正值
B.均為負(fù)值
C.一正一負(fù)
D.至少有一個等于0答案:D4.一部記錄影片在4個單位輪映,每一單位放映一場,則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個單位看成四個位置,在四個位置進(jìn)行全排列,故有A44種結(jié)果,故選C.5.如圖,在復(fù)平面內(nèi),點(diǎn)A表示復(fù)數(shù)z的共軛復(fù)數(shù),則復(fù)數(shù)z對應(yīng)的點(diǎn)是()A.AB.BC.CD.D答案:兩個復(fù)數(shù)是共軛復(fù)數(shù),兩個復(fù)數(shù)的實部相同,下部相反,對應(yīng)的點(diǎn)關(guān)于x軸對稱.所以點(diǎn)A表示復(fù)數(shù)z的共軛復(fù)數(shù)的點(diǎn)是B.故選B.6.化簡的結(jié)果是()
A.a(chǎn)2
B.a(chǎn)
C.a(chǎn)
D.a(chǎn)答案:C7.如圖,A地到火車站共有兩條路徑L1和L2,據(jù)統(tǒng)計,通過兩條路徑所用的時間互不影響,所用時間落在各時間段內(nèi)的頻率如下表:所用時間(分鐘)10~2020~3030~4040~5050~60L1的頻率0.10.20.30.20.2L2的頻率00.10.40.40.1現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于趕往火車站.
(Ⅰ)為了盡最大可能在各自允許的時間內(nèi)趕到火車站,甲和乙應(yīng)如何選擇各自的路徑?
(Ⅱ)用X表示甲、乙兩人中在允許的時間內(nèi)能趕到火車站的人數(shù),針對(Ⅰ)的選擇方案,求X的分布列和數(shù)學(xué)期望.答案:(Ⅰ)Ai表示事件“甲選擇路徑Li時,40分鐘內(nèi)趕到火車站”,Bi表示事件“乙選擇路徑Li時,50分鐘內(nèi)趕到火車站”,i=1,2.用頻率估計相應(yīng)的概率可得∵P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2)∴甲應(yīng)選擇LiP(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B2)>P(B1),∴乙應(yīng)選擇L2.(Ⅱ)A,B分別表示針對(Ⅰ)的選擇方案,甲、乙在各自允許的時間內(nèi)趕到火車站,由(Ⅰ)知P(A)=0.6,P(B)=0.9,又由題意知,A,B獨(dú)立,P(X=0)=P(.A.B)=P(.A)P(.B)=0.4×0.1=0.04P(x=1)=P(.AB+A.B)=P(.A)P(B)+P(A)P(.B)=0.4×0.9+0.6×0.1=0.42P(X=2)=P(AB)=P(A)(B)=0.6×0.9=0.54X的分布列EX=0×0.04+1×0.42+2×0.54=1.5.8.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實數(shù)解,求a的值.答案:設(shè)方程的實根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復(fù)數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0
②由②得x0=3或-1,代入①得a=73或-3∴a=73或-39.長為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上移動,,則點(diǎn)C的軌跡是()
A.線段
B.圓
C.橢圓
D.雙曲線答案:C10.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()
A.∠AED=∠B
B.
C.
D.DE∥BC
答案:C11.已知O是正方形ABCD對角線的交點(diǎn),在以O(shè),A,B,C,D這5點(diǎn)中任意一點(diǎn)為起點(diǎn),另一點(diǎn)為終點(diǎn)的所有向量中,
(1)與BC相等的向量有
______;
(2)與OB長度相等的向量有
______;
(3)與DA共線的向量有
______.答案:如圖:(1)與BC相等的向量有AD.(2)與OB長度相等的向量有OA、OC、OD、AO、CO、DO.(3)與DA共線的向量有
CB、BC.12.點(diǎn)(2a,a-1)在圓x2+y2-2y-4=0的內(nèi)部,則a的取值范圍是()
A.-1<a<1
B.0<a<1
C.-1<a<
D.-<a<1答案:D13.已知|a|=1,|b|=2,<a,b>=60°,則|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故為:2314.(理)在直角坐標(biāo)系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,則圓C的圓心極坐標(biāo)為______.答案:∵直角坐標(biāo)系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),∴x2+(y-2)2=4,∵以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,∴圓心坐標(biāo)(0,2),r=2∵0=pcosθ,∴θ=π2,又p=r=2,∴圓C的圓心極坐標(biāo)為(2,π2),故為:(2,π2).15.已知隨機(jī)變量ξ~N(3,22),若ξ=2η+3,則Dη=()
A.0
B.1
C.2
D.4答案:B16.在殘差分析中,殘差圖的縱坐標(biāo)為______.答案:有殘差圖的定義知道,作圖時縱坐標(biāo)為殘差,橫坐標(biāo)可以選為樣本編號,或身高數(shù)據(jù),或體重的估計值,這樣做出的圖形稱為殘差圖.故為:殘差.17.拋物線y=ax2(其中a>0)的焦點(diǎn)坐標(biāo)是(
)
A.(,0)
B.(0,)
C.(,0)
D.(0,)答案:D18.直線(t為參數(shù))的傾斜角是()
A.20°
B.70°
C.45°
D.135°答案:D19.命題“所有能被2整除的數(shù)都是偶數(shù)”的否定
是()
A.所有不能被2整除的整數(shù)都是偶數(shù)
B.所有能被2整除的整數(shù)都不是偶數(shù)
C.存在一個不能被2整除的整數(shù)是偶數(shù)
D.存在一個能被2整除的整數(shù)不是偶數(shù)答案:D20.設(shè)a>0,f(x)=ax2+bx+c,曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對稱軸距離的取值范圍為()
A.[0,]
B.[0,]
C.[0,||]
D.[0,||]答案:B21.將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.答案:向量解析:將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.22.下列點(diǎn)在x軸上的是()
A.(0.1,0.2,0.3)
B.(0,0,0.001)
C.(5,0,0)
D.(0,0.01,0)答案:C23.4個人各寫一張賀年卡,集中后每人取一張別人的賀年卡,共有______種取法.答案:根據(jù)分類計數(shù)問題,可以列舉出所有的結(jié)果,1甲乙互換,丙丁互換2甲丙互換,乙丁互換3甲丁互換,乙丙互換4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通過列舉可以得到共有9種結(jié)果,故為:924.從1,2,…,9這九個數(shù)中,隨機(jī)抽取3個不同的數(shù),則這3個數(shù)的和為偶數(shù)的概率是()A.59B.49C.1121D.1021答案:基本事件總數(shù)為C93,設(shè)抽取3個數(shù),和為偶數(shù)為事件A,則A事件數(shù)包括兩類:抽取3個數(shù)全為偶數(shù),或抽取3數(shù)中2個奇數(shù)1個偶數(shù),前者C43,后者C41C52.∴A中基本事件數(shù)為C43+C41C52.∴符合要求的概率為C34+C14C25C39=1121.25.某人射擊一次擊中的概率為0.6,經(jīng)過3次射擊,此人至少有兩次擊中目標(biāo)的概率為()
A.
B.
C.
D.答案:A26.已知橢圓C的左右焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),離心率22,直線y=x-1與橢圓C交于不同的兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)求弦AB的長度.答案:(本小題滿分13分)(1)依題意可設(shè)橢圓C的方程為x2a2+y2b2=1(a>b>0)…(1分)則c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴橢圓C的方程為x28+y24=1…(6分)(2)設(shè)A(x1,y1),B(x2,y2)…(7分)聯(lián)立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1?x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]
=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)27.函數(shù)f(x)的定義域為R+,若f(x+y)=f(x)+f(y),f(8)=3,則f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,則f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故選B.28.如圖是2010年青年歌手大獎賽中,七位評委為甲、乙兩名選手打出的分?jǐn)?shù)的莖葉圖(其中m為數(shù)字0~9中的
一個),去掉一個最高分和一個最低分后,甲、乙兩名選手得分的平均數(shù)分別為a1,a2,則一定有()A.a(chǎn)1>a2B.a(chǎn)2>a1C.a(chǎn)1=a2D.a(chǎn)1,a2的大小與m的值有關(guān)答案:由題意知去掉一個最高分和一個最低分以后,兩組數(shù)據(jù)都有五個數(shù)據(jù),代入數(shù)據(jù)可以求得甲和乙的平均分a1=1+4+5×35+80=84,a2=4×3+6+75+80=85,∴a2>a1故選B29.求下列函數(shù)的定義域及值域.
(1)y=234x+1;
(2)y=4-8x.答案:(1)要使函數(shù)y=234x+1有意義,只需4x+1≠0,即x≠-14,所以,函數(shù)的定義域為{x|x≠-14}.設(shè)y=2u,u=34x+1≠0,則u>0,由函數(shù)y=2u,得y≠20=1,所以函數(shù)的值域為{y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函數(shù)的定義域為{x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以函數(shù)的值域為[0,2).30.命題“所以奇數(shù)的立方是奇數(shù)”的否定是()
A.所有奇數(shù)的立方不是奇數(shù)
B.不存在一個奇數(shù),它的立方不是奇數(shù)
C.存在一個奇數(shù),它的立方不是奇數(shù)
D.不存在一個奇數(shù),它的立方是奇數(shù)答案:C31.若數(shù)列{an}是等差數(shù)列,對于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比上述性質(zhì),若數(shù)列{cn}是各項都為正數(shù)的等比數(shù)列,對于dn>0,則dn=______時,數(shù)列{dn}也是等比數(shù)列.答案:在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時,我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等,故我們可以由數(shù)列{cn}是等差數(shù)列,則對于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比推斷:若數(shù)列{cn}是各項均為正數(shù)的等比數(shù)列,則當(dāng)dn=nC1C2C3Cn時,數(shù)列{dn}也是等比數(shù)列.故為:nC1C2C3Cn32.如圖所示,已知點(diǎn)P為菱形ABCD外一點(diǎn),且PA⊥面ABCD,PA=AD=AC,點(diǎn)F為PC中點(diǎn),則二面角CBFD的正切值為()
A.
B.
C.
D.
答案:D33.(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.
C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長線上一點(diǎn),且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A.∵|x-5|+|x+3|≥10,∴當(dāng)x≥5時,x-5+x+3≥10,∴x≥6;當(dāng)x≤-3時,有5-x+(-x-3)≥10,∴x≤-4;當(dāng)-4<x<5時,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標(biāo)為(-1,0),∴其極坐標(biāo)是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.34.已知兩個非空集合A、B滿足A∪B={1,2,3},則符合條件的有序集合對(A,B)個數(shù)是()A.6B.8C.25D.27答案:按集合A分類討論若A={1,2,3},則B是A的子集即可滿足題意,故B有7種情況,即有序集合對(A,B)個數(shù)為7若A={1,2,}或{1,3}或{2,3}時,集合B中至少有一個元素,故每種情況下,B都有4種情況,故有序集合對(A,B)個數(shù)為4×3=12若A={1}或{3}或{2}時集合中至少有二個元素,故每種情況下,B都有2種情況,故有序集合對(A,B)個數(shù)為2×3=6綜上,符合條件的有序集合對(A,B)個數(shù)是7+12+6=25故選C35.設(shè)集合A={1,3},集合B={1,2,4,5},則集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.36.曲線的極坐標(biāo)方程ρ=4sinθ化為直角坐標(biāo)方程為______.答案:將原極坐標(biāo)方程ρ=4sinθ,化為:ρ2=4ρsinθ,化成直角坐標(biāo)方程為:x2+y2-4y=0,即x2+(y-2)2=4.故為:x2+(y-2)2=4.37.mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在兩坐標(biāo)軸上的截距分別為1m,1n.則mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為12|mn|.故為12|mn|.38.已知曲線x2a+y2b=1和直線ax+by+1=0(a,b為非零實數(shù)),在同一坐標(biāo)系中,它們的圖形可能是()A.
B.
C.
D.
答案:A選項中,直線的斜率大于0,故系數(shù)a,b的符號相反,此時曲線應(yīng)是雙曲線,故不對;B選項中直線的斜率小于0,故系數(shù)a,b的符號相同且都為負(fù),此時曲線不存在,故不對;C選項中,直線斜率為正,故系數(shù)a,b的符號相反,且a正,b負(fù),此時曲線應(yīng)是焦點(diǎn)在x軸上的雙曲線,圖形符合結(jié)論,可選;D選項中不正確,由C選項的判斷可知D不正確.故選D39.在復(fù)平面內(nèi),記復(fù)數(shù)3+i對應(yīng)的向量為OZ,若向量OZ饒坐標(biāo)原點(diǎn)逆時針旋轉(zhuǎn)60°得到向量OZ所對應(yīng)的復(fù)數(shù)為______.答案:向量OZ饒坐標(biāo)原點(diǎn)逆時針旋轉(zhuǎn)60°得到向量所對應(yīng)的復(fù)數(shù)為(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故為2i.40.橢圓x29+y216=1上一動點(diǎn)P到兩焦點(diǎn)距離之和為()A.10B.8C.6D.不確定答案:根據(jù)橢圓的定義,可知動點(diǎn)P到兩焦點(diǎn)距離之和為2a=8,故選B.41.設(shè)雙曲線的焦點(diǎn)在x軸上,兩條漸近線為y=±x,則雙曲線的離心率e=()
A.5
B.
C.
D.答案:C42.f(x)=(1+2x)m+(1+3x)n(m,n∈N*)的展開式中x的系數(shù)為13,則x2的系數(shù)為()A.31B.40C.31或40D.71或80答案:(1+2x)m的展開式中x的系數(shù)為2Cm1=2m,(1+3x)n的展開式中x的系數(shù)為3Cn1=3n∴3n+2m=13∴n=1m=5或n=3m=2(1+2x)m的展開式中的x2系數(shù)為22Cm2,(1+3x)n的展開式中的x2系數(shù)為32Cn2∴當(dāng)n=1m=5時,x2的系數(shù)為22Cm2+32Cn2=40當(dāng)n=3m=2時,x2的系數(shù)為22Cm2+32Cn2=31故選C.43.某同學(xué)參加科普知識競賽,需回答三個問題,競賽規(guī)則規(guī)定:答對第一、二、三個問題分別得100分、100分、200分,答錯得0分,假設(shè)這位同學(xué)答對第一、二、三個問題的概率分別為0.8、0.7、0.6,且各題答對與否相互之間沒有影響,則這名同學(xué)得300分的概率為
;這名同學(xué)至少得300分的概率為
.答案:0.228;0.564解析:得300分可能是答對第一、三題或第二、三題,其概率為0.8×0.3×0.6+0.2×0.7×0.6=0.228;答對4道題可得400分,其概率為0.8×0.7×0.6=0.336,所以至少得300分的概率為0.228+0.336=0.564。44.已知中心在原點(diǎn),對稱軸為坐標(biāo)軸,長半軸長與短半軸長的和為92,離心率為35的橢圓的標(biāo)準(zhǔn)方程為______.答案:由題意可得a+b=92e=ca=35a2=b2+c2,解得a2=50b2=32.∴橢圓的標(biāo)準(zhǔn)方程為x250+y232=1或y250+x232=1.故為x250+y232=1或y250+x232=1.45.圓的極坐標(biāo)方程是ρ=2cosθ+2sinθ,則其圓心的極坐標(biāo)是()
A.(2,)
B.(2,)
C.(1,)
D.(1,)答案:A46.已知A(4,1,3),B(2,-5,1),C是線段AB上一點(diǎn),且,則C點(diǎn)的坐標(biāo)為()
A.
B.
C.
D.答案:C47.命題“梯形的兩對角線互相不平分”的命題形式為()A.p或qB.p且qC.非pD.簡單命題答案:記命題p:梯形的兩對角線互相平分,
而原命題是“梯形的兩對角線互相不平分”,是命題p的否定形式
故選C48.已知直線l過點(diǎn)P(1,0,-1),平行于向量=(2,1,1),平面α過直線l與點(diǎn)M(1,2,3),則平面α的法向量不可能是()
A.(1,-4,2)
B.(,-1,)
C.(-,-1,-)
D.(0,-1,1)答案:D49.一條直線的傾斜角的余弦值為32,則此直線的斜率為()A.3B.±3C.33D.±33答案:設(shè)直線的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線的斜率k=tanα=33故選:C50.(2的c的?湛江一模)已知⊙O的方程為x2+y2=c,則⊙O上的點(diǎn)到直線x=2+45ty=c-35t(t為參數(shù))的距離的最大值為______.答案:∵直線x=2+45t一=1-35t(t為參數(shù))∴3x+4一=10,∵⊙e的方程為x2+一2=1,圓心為(0,0),設(shè)直線3x+4一=k與圓相切,∴|k|5=1,∴k=±5,∴直線3x+4一=k與3x+4一=10,之間的距離就是⊙e上的點(diǎn)到直線的距離的最大值,∴d=|10±5|5,∴d的最大值是155=3,故為:3.第2卷一.綜合題(共50題)1.以知F是雙曲線x24-y212=1的左焦點(diǎn),A(1,4),P是雙曲線右支上的動點(diǎn),則|PF|+|PA|的最小值為______.答案:∵A點(diǎn)在雙曲線的兩只之間,且雙曲線右焦點(diǎn)為F′(4,0),∴由雙曲線性質(zhì)|PF|-|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5兩式相加得|PF|+|PA|≥9,當(dāng)且僅當(dāng)A、P、F’三點(diǎn)共線時等號成立.故為92.已知R為實數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點(diǎn),故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0,故D正確;故選D.3.方程2x2+ky2=1表示的曲線是長軸在y軸的橢圓,則實數(shù)k的范圍是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:橢圓方程化為x212+y21k=1.焦點(diǎn)在y軸上,則1k>12,即k<2.又k>0,∴0<k<2.故選C.4.已知矩陣A將點(diǎn)(1,0)變換為(2,3),且屬于特征值3的一個特征向量是11,(1)求矩陣A.(2)β=40,求A5β.答案:(1)設(shè)A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多項式為f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3時,α1=11,λ2=-1時,α2=1-3令β=mα1+α2,則β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.5.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時,發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時已晚,烏龜還是先到達(dá)了終點(diǎn)…,用S1、S2分別表示烏龜和兔子所行的路程,t為時間,則下圖與故事情節(jié)相吻合的是()
A.
B.
C.
D.
答案:B6.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,證明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)?(b1+b2+…+bnn).當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時等號成立.答案:證明不妨設(shè)a1≤a2≤…≤an,b1≥b2≥…≥bn.則由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.將上述n個式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式兩邊除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等號當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時成立.7.計算機(jī)的程序設(shè)計語言很多,但各種程序語言都包含下列基本的算法語句:______,______,______,______,______.答案:計算機(jī)的程序設(shè)計語言很多,但各種程序語言都包含下列基本的算法語句:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.故為:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.8.化簡:AB+CD+BC=______.答案:如圖:AB+CD+BC=AB+BC+CD=AC+CD=AD.故為:AD.9.探照燈反射鏡的縱斷面是拋物線的一部分,光源在拋物線的焦點(diǎn),已知燈口直徑是60
cm,燈深40
cm,則光源到反射鏡頂點(diǎn)的距離是
______cm.答案:設(shè)拋物線方程為y2=2px(p>0),點(diǎn)(40,30)在拋物線y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射鏡頂點(diǎn)的距離為458cm.10.函數(shù)y=x2x4+9(x≠0)的最大值為______,此時x的值為______.答案:y=x2x4+9=1x2+9x2≤129=16,當(dāng)且僅當(dāng)x2=9x2,即x=±3時取等號.故為:16,
±311.為了參加奧運(yùn)會,對自行車運(yùn)動員甲、乙兩人在相同的條件下進(jìn)行了6次測試,測得他們的最大速度的數(shù)據(jù)如表所示:
甲273830373531乙332938342836請判斷:誰參加這項重大比賽更合適,并闡述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(
4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙
(10分)乙參加更合適
(12分)12.10件產(chǎn)品中有7件正品,3件次品,則在第一次抽到次品條件下,第二次抽到次品的概率______.答案:根據(jù)題意,在第一次抽到次品后,有2件次品,7件正品;則第二次抽到次品的概率為29;故為29.13.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時,a在e方向上的投影為()A.43B.4C.42D.8+23答案:由兩個向量數(shù)量積的幾何意義可知:a在e方向上的投影即:a?e=|a||e|cosπ3=8×1×12=4故選B14.對任意實數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個非零常數(shù)m,使得對任意實數(shù)x,都有x*m=x,則m的值是[
]
A.4
B.-4
C.-5
D.6答案:A15.若直線ax+by+1=0與圓x2+y2=1相離,則點(diǎn)P(a,b)的位置是()
A.在圓上
B.在圓外
C.在圓內(nèi)
D.以上都有可能答案:C16.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點(diǎn)D,延長DA交△ABC的外接圓于點(diǎn)F,連接FB,F(xiàn)C.
(1)求證:FB=FC;
(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長.答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC;
…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6
…10′17.甲、乙兩人投籃,投中的概率分別為0.6,0.7,若兩人各投2次,則兩人都投中1次的概率為______.答案:兩人都投中1次的概率為C210.6×0.4×C210.7×0.3=0.2016故為:0.201618.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個大于1.答案:證明:用反證法,假設(shè)x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個大于1,即原命題得證.19.若直線l的方程為x=2,則該直線的傾斜角是()A.60°B.45°C.90°D.180°答案:∵直線l的方程為x=2∴直線l與x軸垂直∴直線l的傾斜角為90°故選C20.設(shè)a>0,f(x)=ax2+bx+c,曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對稱軸距離的取值范圍為()
A.[0,]
B.[0,]
C.[0,||]
D.[0,||]答案:B21.寫出求1+2+3+4+5+6+…+100的一個算法.可運(yùn)用公式1+2+3+…+n=n(n+1)2直接計算.
第一步______;
第二步______;
第三步
輸出計算的結(jié)果.答案:由條件知構(gòu)成等差數(shù)列,從而前n項和公式求得其值,求1+2+3+4+5+6+…+100,故先取n=100,再代入計算S=n(n+1)2.故為:取n=100;計算S=n(n+1)2.22.已知直線y=kx+1與橢圓x25+y2m=1恒有公共點(diǎn),則實數(shù)m的取值范圍為()A.m≥1B.m≥1,或0<m<1C.0<m<5,且m≠1D.m≥1,且m≠5答案:由于直線y=kx+1恒過點(diǎn)M(0,1)要使直線y=kx+1與橢圓x25+y2m=1恒有公共點(diǎn),則只要M(0,1)在橢圓的內(nèi)部或在橢圓上從而有m>0m≠505+1m≤1,解可得m≥1且m≠5故選D.23.已知x,y之間的一組數(shù)據(jù):x1.081.121.191.28y2.252.372.402.55y與x之間的線性性回歸方y(tǒng)=bx+a必過定點(diǎn)______.答案:回歸直線方程一定過樣本的中心點(diǎn)(.x,.y),.x=1.08+1.12+1.19+1.284=1.1675,
.y=2.25+2.37+2.40+2.554=2.3925,∴樣本中心點(diǎn)是(1.1675,2.3925),故為(1.1675,2.3925).24.某校有老師300人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為n的樣本,已知從女學(xué)生中抽取的人數(shù)為80,則n=()
A.171
B.184
C.200
D.392答案:C25.搖獎器有10個小球,其中8個小球上標(biāo)有數(shù)字2,2個小球上標(biāo)有數(shù)字5,現(xiàn)搖出3個小球,規(guī)定所得獎金(元)為這3個小球上記號之和,求此次搖獎獲得獎金數(shù)額的數(shù)學(xué)期望.答案:設(shè)此次搖獎的獎金數(shù)額為ξ元,當(dāng)搖出的3個小球均標(biāo)有數(shù)字2時,ξ=6;當(dāng)搖出的3個小球中有2個標(biāo)有數(shù)字2,1個標(biāo)有數(shù)字5時,ξ=9;當(dāng)搖出的3個小球有1個標(biāo)有數(shù)字2,2個標(biāo)有數(shù)字5時,ξ=12.所以,P(ξ=6)=C38C310=715P(ξ=9)=C28C12C310=715P(ξ=12)=C18C22C310=115Eξ=6×715+9×715+12×115=395(元)
答:此次搖獎獲得獎金數(shù)額的數(shù)字期望是395元.26.設(shè)a=(-1,1),b=(x,3),c=(5,y),d=(8,6),且b∥d,(4a+d)⊥c.
(1)求b和c;
(2)求c在a方向上的射影;
(3)求λ1和λ2,使c=λ1a+λ2b.答案:(1)∵b∥d,∴6x-24=0.∴x=4.∴b=(4,3).∵4a+d=(4,10),(4a+d
)⊥c,∴5×4+10y=0.∴y=-2.∴c=(5,-2).(2)cos<a,c>=a?c|a|
|c|=-5-22?29=-75858,∴c在a方向上的投影為|c|cos<a,c>=-722.(3)∵c=λ1a+λ2b,∴5=-λ1+4λ2-2=λ1+3λ2,解得λ1=-237,λ2=37.27.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點(diǎn),建立適當(dāng)?shù)淖鴺?biāo)系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個法向量.解析:以D為原點(diǎn),DA、DC、DD1所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系.(如圖所示).設(shè)棱長為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設(shè)平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個法向量.28.如圖程序輸出的結(jié)果是()
A.3,4
B.4,4
C.3,3
D.4,3
答案:B29.已知點(diǎn)P是拋物線y2=2x上的一個動點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為______.答案:依題設(shè)P在拋物線準(zhǔn)線的投影為P',拋物線的焦點(diǎn)為F,則F(12,0),依拋物線的定義知P到該拋物線準(zhǔn)線的距離為|PP'|=|PF|,則點(diǎn)P到點(diǎn)A(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和d=|PF|+|PA|≥|AF|=(12)2+22=172.故為:172.30.在正方體ABCD-A1B1C1D1中,若E為A1C1中點(diǎn),則直線CE垂直于()A.ACB.BDC.A1DD.A1A答案:以A為原點(diǎn),AB、AD、AA1所在直線分別為x,y,z軸建空間直角坐標(biāo)系,設(shè)正方體棱長為1,則A(0,0,0),C(1,1,0),B(1,0,0),D(0,1,0),A1(0,0,1),E(12,12,1),∴CE=(-12,-12,1),AC=(1,1,0),BD=(-1,1,0),A1D=(0,1,-1),A1A=(0,0,-1),顯然CE?BD=12-12+0=0,∴CE⊥BD,即CE⊥BD.
故選B.31.如圖,設(shè)P,Q為△ABC內(nèi)的兩點(diǎn),且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB
所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:4532.某公司為慶祝元旦舉辦了一個抽獎活動,現(xiàn)場準(zhǔn)備的抽獎箱里放置了分別標(biāo)有數(shù)字1000、800﹑600、0的四個球(球的大小相同).參與者隨機(jī)從抽獎箱里摸取一球(取后即放回),公司即贈送與此球上所標(biāo)數(shù)字等額的獎金(元),并規(guī)定摸到標(biāo)有數(shù)字0的球時可以再摸一次﹐但是所得獎金減半(若再摸到標(biāo)有數(shù)字0的球就沒有第三次摸球機(jī)會),求一個參與抽獎活動的人可得獎金的期望值是多少元.答案:設(shè)ξ表示摸球后所得的獎金數(shù),由于參與者摸取的球上標(biāo)有數(shù)字1000,800,600,0,當(dāng)摸到球上標(biāo)有數(shù)字0時,可以再摸一次,但獎金數(shù)減半,即分別為500,400,300,0.則ξ的所有可能取值為1000,800,600,500,400,300,0.依題意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,則ξ的分布列為∴所求期望值為Eξ=14(1000+800+600)+116(500+400+300+0)=675元.33.若直線x=1的傾斜角為α,則α等于()A.0°B.45°C.90°D.不存在答案:直線x=1與x軸垂直,故直線的傾斜角是90°,故選C.34.如圖為某公司的組織結(jié)構(gòu)圖,則后勤部的直接領(lǐng)導(dǎo)是______.
答案:有已知中某公司的組織結(jié)構(gòu)圖,可得專家辦公室直接領(lǐng)導(dǎo):財務(wù)部,后勤部和編輯部三個部門,故后勤部的直接領(lǐng)導(dǎo)是專家辦公室.故為:專家辦公室.35.已知三角形ABC的頂點(diǎn)坐標(biāo)為A(0,3)、B(-2,-1)、C(4,3),M是BC邊上的中點(diǎn)。
(1)求AB邊所在的直線方程。
(2)求中線AM的長。
(3)求點(diǎn)C關(guān)于直線AB對稱點(diǎn)的坐標(biāo)。答案:解:(1)由兩點(diǎn)式得AB邊所在的直線方程為:=即2x-y+3=0(2)由中點(diǎn)坐標(biāo)公式得M(1,1)∴|AM|==(3)設(shè)C點(diǎn)關(guān)于直線AB的對稱點(diǎn)為C′(x′,y′)則CC′⊥AB且線段CC′的中點(diǎn)在直線AB上。即解之得x′=
y′=C′點(diǎn)坐標(biāo)為(,)36.直線y=kx+1與圓x2+y2=4的位置關(guān)系是()
A.相交
B.相切
C.相離
D.與k的取值有關(guān)答案:A37.若a>0,b>0,2a+3b=1,則ab的最大值為______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故為12438.已知一次函數(shù)y=(2k-4)x-1在R上是減函數(shù),則k的取值范圍是()A.k>2B.k≥2C.k<2D.k≤2答案:因為函數(shù)y=(2k-4)x-1為R上是減函數(shù)?該一次函數(shù)的一次項的系數(shù)為負(fù)?2k-4<0?k<2.故為:C39.如圖所示,已知PA切圓O于A,割線PBC交圓O于B、C,PD⊥AB于D,PD與AO的延長線相交于點(diǎn)E,連接CE并延長交圓O于點(diǎn)F,連接AF.
(1)求證:B,C,E,D四點(diǎn)共圓;
(2)當(dāng)AB=12,tan∠EAF=23時,求圓O的半徑.答案:(1)由切割線定理PA2=PB?PC由已知易得Rt△PAD∽Rt△PEA,∴PA2=PD?PE,∴PA2=PB?PC=PA2=PD?PE,又∠BPD為公共角,∴△PBD∽△PEC,∴∠BDP=∠C∴B,C,E,D四點(diǎn)共圓
(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,∵∠PBD=∠F,∴∠F=∠PEC,∴PE∥AF.∵AB=12,∴AG=6.∵PD⊥AB,∴PD∥OG.∴PE∥OG∥AF,∴∠AOG=∠EAF.在Rt△AOG中,tan∠AOG=tan∠EAF=23=6OG,∴OG=9∴R=AO=AG2+OG2=313∴圓O的半徑313.40.已知A(4,1,3)、B(2,-5,1),C為線段AB上一點(diǎn),且則C的坐標(biāo)為()
A.
B.
C.
D.答案:C41.下表是x與y之間的一組數(shù)據(jù),則y關(guān)于x的線性回歸方程
必過點(diǎn)()
x
0
1
2
3
y
1
3
5
7
A.(2,2)
B.(1.5,2)
C.(1,2)
D.(1.5,4)答案:D42.已知AB和CD是曲線(t為參數(shù))的兩條相交于點(diǎn)P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·
|PD|,
(Ⅰ)將曲線(t為參數(shù))化為普通方程,并說明它表示什么曲線;
(Ⅱ)試求直線AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示拋物線;(Ⅱ)設(shè)直線AB和CD的傾斜角分別為α,β,則直線AB和CD的參數(shù)方程分別為,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依題意知sinα≠0且方程③的判別式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有兩個不相等的實數(shù)解t1,t2,則由t的幾何意義知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直線AB的傾斜角∴kAB=1或kAB=-1,故直線AB的方程為y=x或x+y-4=0。43.已知向量a=(3,4),b=(8,6),c=(2,k),其中k為常數(shù),如果<a,c>=<b,c>,則k=______.答案:由題意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k
2=16+6k104+k
2.解得k=2,故為2.44.若a>0,b>0,則不等式-b<aA.<x<0或0<x<
答案:D解析:試題分析:45.如果雙曲線的半實軸長為2,焦距為6,那么該雙曲線的離心率是()
A.
B.
C.
D.2答案:C46.給出的下列幾個命題:
①向量共面,則它們所在的直線共面;
②零向量的方向是任意的;
③若則存在唯一的實數(shù)λ,使
其中真命題的個數(shù)為()
A.0
B.1
C.2
D.3答案:B47.設(shè)矩陣M=.32-121232.的逆矩陣是M-1=.abcd.,則a+c的值為______.答案:由題意,矩陣M的行列式為.32-121232.=32×32+12×12=1∴矩陣M=.32-121232.的逆矩陣是M-1=.3212-1232.∴a+c=3-12故為3-1248.已知非零向量,若與互相垂直,則=(
)
A.
B.4
C.
D.2答案:D49.(本小題滿分10分)選修4-1:幾何證明選講
如圖,的角平分線的延長線交它的外接圓于點(diǎn).
(Ⅰ)證明:;
(Ⅱ)若的面積,求的大小.答案:(Ⅰ)證明見解析(Ⅱ)90°解析:本題主要考查平面幾何中與圓有關(guān)的定理及性質(zhì)的應(yīng)用、三角形相似及性質(zhì)的應(yīng)用.證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因為△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.【點(diǎn)評】在圓的有關(guān)問題中經(jīng)常要用到弦切角定理、圓周角定理、相交弦定理等結(jié)論,解題時要注意根據(jù)已知條件進(jìn)行靈活的選擇,同時三角形相似是證明一些與比例有關(guān)問題的的最好的方法.50.如圖程序框圖箭頭a指向①處時,輸出
s=______.箭頭a指向②處時,輸出
s=______.答案:程序在運(yùn)行過程中各變量的情況如下表所示:(1)當(dāng)箭頭a指向①時,是否繼續(xù)循環(huán)
S
i循環(huán)前/0
1第一圈
是
1
2第二圈
是
2
3第三圈
是
3
4第四圈
是
4
5第五圈
是
5
6第六圈
否故最終輸出的S值為5,即m=5;(2)當(dāng)箭頭a指向②時,是否繼續(xù)循環(huán)
S
i循環(huán)前/0
1第一圈
是
1
2第二圈
是
1+2
3第三圈
是
1+2+3
4第四圈
是
1+2+3+4
5第五圈
是
1+2+3+4+5
6第六圈
否故最終輸出的S值為1+2+3+4+5=15;則n=15.故為:5,15.第3卷一.綜合題(共50題)1.方程x2+y2=1(xy<0)的曲線形狀是()
A.
B.
C.
D.
答案:C2.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,F(xiàn)為焦點(diǎn),A,B,C為拋物線上的三點(diǎn),且滿足FA+FB+FC=0,|FA|+|FB|+|FC|=6,則拋物線的方程為______.答案:設(shè)向量FA,F(xiàn)B,F(xiàn)C的坐標(biāo)分別為(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴拋物線方程為y2=4x.故為:y2=4x.3.已知△ABC的三個頂點(diǎn)A(-2,-1)、B(1,3)、C(2,2),則△ABC的重心坐標(biāo)為______.答案:設(shè)△ABC的重心坐標(biāo)為(x,y),則有三角形的重心坐標(biāo)公式可得x=-2+1+23=13,y=-1+3+23=43,故△ABC的重心坐標(biāo)為(13,43),故為(13,43).4.已知直線經(jīng)過點(diǎn)A(0,4)和點(diǎn)B(1,2),則直線AB的斜率為()
A.3
B.-2
C.2
D.不存在答案:B5.某廠2011年的產(chǎn)值為a萬元,預(yù)計產(chǎn)值每年以7%的速度增加,則該廠到2022年的產(chǎn)值為______萬元.答案:2011年產(chǎn)值為a,增長率為7%,2012年產(chǎn)值為a+a×7%=a(1+7%),2013年產(chǎn)值為a(1+7%)+a(1+7%)×7%=a(1+7%)2,…,2022年的產(chǎn)值為a(1+7%)11.故為:a(1+7%)11.6.與直線3x+4y-3=0平行,并且距離為3的直線方程為______.答案:設(shè)所求直線上任意一點(diǎn)P(x,y),由題意可得點(diǎn)P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.7.兩個樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動()
A.大
B.相等
C.小
D.無法確定答案:A8.“因為對數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯誤是()
A.大前提錯導(dǎo)致結(jié)論錯
B.小前提錯導(dǎo)致結(jié)論錯
C.推理形式錯導(dǎo)致結(jié)論錯
D.大前提和小前提都錯導(dǎo)致結(jié)論錯答案:A9.下列命題中,錯誤的是()
A.平行于同一條直線的兩個平面平行
B.平行于同一個平面的兩個平面平行
C.一個平面與兩個平行平面相交,交線平行
D.一條直線與兩個平行平面中的一個相交,則必與另一個相交答案:A10.在數(shù)列{an}中,a1=1,an+1=2a
n2+an(n∈N*),
(1)計算a2,a3,a4
(2)猜想數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明.答案:(1):a2=2a
12+a1=23,a3=2a
22+a2=24,a4=2a
32+a3=25,(2):猜想an=2n+1下面用數(shù)學(xué)歸納法證明這個猜想.①當(dāng)n=1時,a1=1,命題成立.②假設(shè)n=k時命題成立,即ak=2k+1當(dāng)n=k+1時ak+1=2a
k2+ak=2×2k+12+2k+1(把假設(shè)作為條件代入)=42(k+1)+2=2(k+1)+1由①②知命題對一切n∈N*均成立.11.把兩條直線的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當(dāng)?shù)氖牵ǎ?/p>
①平行
②垂直
③相交
④斜交.
A.①②③④
B.①④②③
C.①③②④
D.②①③④
答案:C12.考慮坐標(biāo)平面上以O(shè)(0,0),A(3,0),B(0,4)為頂點(diǎn)的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請問下列哪些選項是正確的?
(1)C1的半徑為2
(2)C1的圓心在直線y=x上
(3)C1的圓心在直線4x+3y=12上
(4)C2的圓心在直線y=x上
(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點(diǎn)的位置如右圖所示,C1,C2為△OAB的外接圓與內(nèi)切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項錯誤;又C1的圓心為線段AB的中點(diǎn)(32,2),此點(diǎn)在直線4x+3y=12上,所以選項(2)錯誤,選項(3)正確;如圖,P為△OAB的內(nèi)切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標(biāo)為(1,1),此點(diǎn)在y=x上.所以選項(4)正確,選項(5)錯誤,綜上,正確的選項有(3)、(4).13.某個命題與自然數(shù)n有關(guān),若n=k(k∈N*)時命題成立,那么可推得當(dāng)n=k+1時該命題也成立.現(xiàn)已知當(dāng)n=5時,該命題不成立,那么可推得()
A.當(dāng)n=6時,該命題不成立
B.當(dāng)n=6時,該命題成立
C.當(dāng)n=4時,該命題不成立
D.當(dāng)n=4時,該命題成立答案:C14.在7塊并排、形狀大小相同的試驗田上進(jìn)行施化肥量對水稻產(chǎn)量影響的試驗,得到如下表所示的一組數(shù)據(jù)(單位:kg).
(1)畫出散點(diǎn)圖;
(2)求y關(guān)于x的線性回歸方程;
(3)若施化肥量為38kg,其他情況不變,請預(yù)測水稻的產(chǎn)量.答案:(1)根據(jù)題表中數(shù)據(jù)可得散點(diǎn)圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據(jù)回歸直線方程系數(shù)的公式計算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預(yù)測,施化肥量為38kg,其他情況不變時,水稻的產(chǎn)量是438kg.15.若a>b>0,則,,,從大到小是_____答案:>>>解析:,又ab>0,;即。故有:>>>16.如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=6.
(1)求證:PA⊥B1D1;
(2)求平面PAD與平面BDD1B1所成銳二面角的余弦值.答案:以D1為原點(diǎn),D1A1所在直線為x軸,D1C1所在直線為y軸,D1D所在直線為z軸建立空間直角坐標(biāo)系,則D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2),P(1,1,4).(1)證明:∵AP=(-1,1,2),D1B1=(2,2,0),∴AP?D1B1=-2+2+0=0,∴PA⊥B1D1.(2)平面BDD1B1的法向量為AC=(-2,2,0).DA=(2,0,0),OP=(1,1,2).設(shè)平面PAD的法向量為n=(x,y,z),則n⊥DA,n⊥DP.∴2x=0x+y+2z=0∴x=0y=-2z.取n=(0,-2,1),設(shè)所求銳二面角為θ,則cosθ=|n?AC||n|?|AC|=|0-4+0|22×5=105.17.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三個向量共面,則實數(shù)λ等于
A.
B.
C.
D.答案:D18.若不等式(﹣1)na<2+對任意n∈N*恒成立,則實數(shù)a的取值范圍是
[
]A.[﹣2,)
B.(﹣2,)
C.[﹣3,)
D.(﹣3,)答案:A19.下面為一個求20個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為()
A.i>20
B.i<20
C.i>=20
D.i<=20
答案:A20.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C21.已知等差數(shù)列{an}的前n項和為Sn,若向量OB=a100OA+a101OC,且A、B、C三點(diǎn)共線(該直線不過點(diǎn)O),則S200等于______.答案:由題意可知:向量OB=a100OA+a101OC,又∵A、B、C三點(diǎn)共線,則a100+a101=1,等差數(shù)列前n項的和為Sn=(a1+an)?n
2,∴S200=(a1+a200)×200
2=(a100+
a101)×2002=100,故為100.22.在△ABC中,已知A(2,3),B(8,-4),點(diǎn)G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標(biāo)為______.答案:設(shè)C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).23.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均為實數(shù),i為虛數(shù)單位,且對于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.
(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式:
(Ⅱ)將(x、y)用為點(diǎn)P的坐標(biāo),(x'、y')作為點(diǎn)Q的坐標(biāo),上述關(guān)系式可以看作是坐標(biāo)平面上點(diǎn)的一個變換:它將平面上的點(diǎn)P變到這一平面上的點(diǎn)Q.已知點(diǎn)P經(jīng)該變換后得到的點(diǎn)Q的坐標(biāo)為(3,2),試求點(diǎn)P的坐標(biāo);
(Ⅲ)若直線y=kx上的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在該直線上,試求k的值.答案:(I)由題設(shè)得,|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0?.z,∴x′+y′i=.(1-3i)?.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由復(fù)數(shù)相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和題意得,x+3y=33x-y=2,解得x=343y=14
,即P點(diǎn)的坐標(biāo)為(343,14).
(Ⅲ)∵直線y=kx上的任意點(diǎn)P(x,y),其經(jīng)變換后的點(diǎn)Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵當(dāng)k=0時,y=0,y=3x不是同一條直線,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-324.若雙曲線的漸近線方程為y=±34x,則雙曲線的離心率為______.答案:由題意可得,當(dāng)焦點(diǎn)在x軸上時,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點(diǎn)在y軸上時,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53
或54.25.已知直線l:ax+by=1(ab>0)經(jīng)過點(diǎn)P(1,4),則l在兩坐標(biāo)軸上的截距之和的最小值是______.答案:∵直線l:ax+by=1(ab>0)經(jīng)過點(diǎn)P(1,4),∴a+4b=1,故a、b都是正數(shù).故直線l:ax+by=1,此直線在x、y軸上的截距分別為1a、1b,則l在兩坐標(biāo)軸上的截距之和為1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,當(dāng)且僅當(dāng)4ba=ab時,取等號,故為9.26.長為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上移動,,則點(diǎn)C的軌跡是()
A.線段
B.圓
C.橢圓
D.雙曲線答案:C27.已知向量a=(3,5,1),b=(2,2,3),c=(4,-1,-3),則向量2a-3b+4c的坐標(biāo)為______.答案:∵a=(3,5,1),b=(2,2,3),c=(4,-1,-3),∴向量2a-3b+4c=2(3,5,1)-3(2,2,3)+4(4,-1,-3)=(16,0,-19)故為:(16,0,-19).28.用反證法證明命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”則假設(shè)的內(nèi)容是()
A.a(chǎn),b都能被5整除
B.a(chǎn),b都不能被5整除
C.a(chǎn),b不能被5整除
D.a(chǎn),b有1個不能被5整除答案:B29.若一元二次方程x2+(a-1)x+1-a2=0有兩個正實數(shù)根,則a的取值范圍是(
)
A.(-1,1)
B.(-∞,)∪[1,+∞)
C.(-1,]
D.[,1)答案:C30.”m>n>0”是”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”的()
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C31.若點(diǎn)P(-1,3)在圓x2+y2=m2上,則實數(shù)m=______.答案:∵點(diǎn)P(-1,3)在圓x2+y2=m2上,∴點(diǎn)P坐標(biāo)代入,得(-1)2+(3)2=m2,即m2=4,解之得m=±2.故為:±232.已知△ABC的頂點(diǎn)坐標(biāo)為A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,則AD的長為______.答案:D在BC上,且S△ABC=3S△ABD,∴D點(diǎn)為BC邊上的三等分點(diǎn)則D點(diǎn)分線段BC所成的比為12則易求出D點(diǎn)坐標(biāo)為:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故為:3233.已知α,β表示兩個不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由平面與平面垂直的判定定理知如果m為平面α內(nèi)的一條直線,m⊥β,則α⊥β,反過來則不一定所以“α⊥β”是“m⊥β”的必要不充分條件.故選B.34.直線y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線y=2的傾斜角是0°,斜率為0故選D.35.若90°<θ<180°,曲線x2+y2sinθ=1表示()
A.焦點(diǎn)在x軸上的雙曲線
B.焦點(diǎn)在y軸上的雙曲線
C.焦點(diǎn)在x軸上的橢圓
D.焦點(diǎn)在y軸上的橢圓答案:D36.某超市推出如下優(yōu)惠方案:
(1)一次性購物不超過100元不享受優(yōu)惠;
(2)一次性購物超過100元但不超過300元的一律九折;
(3)一次性購物超過300元的一律八折,有人兩次購物分別付款80元,252元.
如果他一次性購買與上兩次相同的商品,則應(yīng)付款______.答案:該人一次性購物付款80元,據(jù)條件(1)、(2)知他沒有享受優(yōu)惠,故實際購物款為80元;另一次購物付款252元,有兩種可能,其一購物超過300元按八折計,則實際購物款為2520.8=315元.其二購物超過100元但不超過300元按九折計算,則實際購物款為2520.9=280元.故該人兩次購物總價值為395元或360元,若一次性購買這些商品應(yīng)付款316元或288元.故為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 試樁合同范本
- 2024水利工程與土地使用權(quán)人關(guān)于土地使用的合同
- 2024手繪藝術(shù)教育機(jī)構(gòu)合作協(xié)議書3篇
- 專業(yè)裝飾裝修服務(wù)協(xié)議條款范本(2024年版)版B版
- XX酒店2024裝修工程承包協(xié)議條款版
- 2024年離婚法律合同具體要求版B版
- 個人住宅出租單位辦公租賃協(xié)議樣本(2024年)版B版
- 專用鮮花購銷協(xié)議范本(2024修訂)版B版
- 2024年診所醫(yī)療業(yè)務(wù)拓展與市場合作合同3篇
- 專業(yè)電焊作業(yè)委托協(xié)議書版B版
- 綿陽小升初數(shù)學(xué)試題(綿中英才學(xué)校)
- Unit 4 Plants around us C (教學(xué)設(shè)計)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 化工公司安全知識競賽題庫(共1000題)
- 市消化內(nèi)科質(zhì)量控制分中心業(yè)務(wù)指導(dǎo)工作總結(jié)
- 青島版(五年制)四年級下冊小學(xué)數(shù)學(xué)全冊導(dǎo)學(xué)案(學(xué)前預(yù)習(xí)單)
- 退學(xué)費(fèi)和解協(xié)議書模板
- 課程評價與持續(xù)改進(jìn)計劃
- 2024年版美國結(jié)直腸外科醫(yī)師協(xié)會《肛周膿腫、肛瘺、直腸陰道瘺的臨床實踐指南》解讀
- 2024至2030年中國對氯甲苯行業(yè)市場全景調(diào)研及發(fā)展趨勢分析報告
- 智能教育輔助系統(tǒng)運(yùn)營服務(wù)合同
- 心功能分級及護(hù)理
評論
0/150
提交評論