2023年浙江特殊教育職業(yè)學院高職單招(數學)試題庫含答案解析_第1頁
2023年浙江特殊教育職業(yè)學院高職單招(數學)試題庫含答案解析_第2頁
2023年浙江特殊教育職業(yè)學院高職單招(數學)試題庫含答案解析_第3頁
2023年浙江特殊教育職業(yè)學院高職單招(數學)試題庫含答案解析_第4頁
2023年浙江特殊教育職業(yè)學院高職單招(數學)試題庫含答案解析_第5頁
已閱讀5頁,還剩44頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年浙江特殊教育職業(yè)學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.規(guī)定運算.abcd.=ad-bc,則.1i-i2.=______.答案:根據題目的新規(guī)定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故為:1.2.在莖葉圖中,樣本的中位數為______,眾數為______.答案:由莖葉圖可知樣本數據共有6,出現在中間兩位位的數據是20,24,所以樣本的中位數是(20+24)÷2=22由莖葉圖可知樣本數據中出現最多的是12,樣本的眾數是12為:22,123.給出下列四個命題,其中正確的一個是()

A.在線性回歸模型中,相關指數R2=0.80,說明預報變量對解釋變量的貢獻率是80%

B.在獨立性檢驗時,兩個變量的2×2列聯(lián)表中對角線上數據的乘積相差越大,說明這兩個變量沒有關系成立的可能性就越大

C.相關指數R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越好

D.線性相關系數r的絕對值越接近于1,表明兩個隨機變量線性相關性越強答案:D4.在甲、乙兩個盒子里分別裝有標號為1、2、3、4的四個小球,現從甲、乙兩個盒子里各取出1個小球,每個小球被取出的可能性相等.

(1)求取出的兩個小球上標號為相鄰整數的概率;

(2)求取出的兩個小球上標號之和能被3整除的概率;

(3)求取出的兩個小球上標號之和大于5整除的概率.答案:甲、乙兩個盒子里各取出1個小球計為(X,Y)則基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)總數為16種.(1)其中取出的兩個小球上標號為相鄰整數的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種故取出的兩個小球上標號為相鄰整數的概率P=38;(2)其中取出的兩個小球上標號之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5種故取出的兩個小球上標號之和能被3整除的概率為516;(3)其中取出的兩個小球上標號之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6種故取出的兩個小球上標號之和大于5的概率P=385.若|x-4|+|x+5|>a對于x∈R均成立,則a的取值范圍為______.答案:∵|x-4|+|x+5|=|4-x|+|x+5|≥|4-x+x+5|=9,故|x-4|+|x+5|的最小值為9.再由題意可得,當a<9時,不等式對x∈R均成立.故為(-∞,9).6.已知a,b

,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.7.下列說法不正確的是()A.圓柱側面展開圖是一個矩形B.圓錐的過軸的截面是等腰三角形C.直角三角形繞它的一條邊旋轉一周形成的曲面圍成的幾何體是圓錐D.圓臺平行于底面的截面是圓面答案:圓柱的側面展開圖是一個矩形,A正確,因為母線長相等,得到圓錐的軸截面是一個等腰三角形,B正確,圓臺平行于底面的截面是圓面,D正確,故選C.8.給出一個程序框圖,輸出的結果為s=132,則判斷框中應填()

A.i≥11

B.i≥10

C.i≤11

D.i≤12

答案:A9.點P(1,2,2)到原點的距離是()

A.9

B.3

C.1

D.5答案:B10.對于數25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復操作,則第2012次操作后得到的數是

()A.25B.250C.55D.133答案:第1次操作為23+53=133,第2次操作為13+33+33=55,第3次操作為53+53=250,第4次操作為23+53+03=133∴操作結果,以3為周期,循環(huán)出現∵2012=3×670+2∴第2012次操作后得到的數與第2次操作后得到的數相同∴第2012次操作后得到的數是55故選C.11.為如圖所示的四塊區(qū)域涂色,要求相鄰區(qū)域不能同色,現有3種不同顏色可供選擇,則共有______種不同涂色方案(要求用具體數字作答).答案:由題意,首先給左上方一個涂色,有三種結果,再給最左下邊的上面的涂色,有兩種結果,右上方,如果與左下邊的同色,則右方的涂色,有兩種結果,右上方,如果與左下邊的不同色,則右方的涂色,有1種結果,∴根據分步計數原理得到共有3×2×(2+1)=18種結果,故為18.12.若復數z=(m2-1)+(m+1)i為純虛數,則實數m的值等于______.答案:復數z=(m2-1)+(m+1)i當z是純虛數時,必有:m2-1=0且m+1≠0解得,m=1.故為1.13.①點P在△ABC所在的平面內,且②點P為△ABC內的一點,且使得取得最小值;③點P是△ABC所在平面內一點,且,上述三個點P中,是△ABC的重心的有()

A.0個

B.1個

C.2個

D.3個答案:D14.已知圓的極坐標方程為ρ=4cosθ,圓心為C,點P的極坐標為(4,π3),則|CP|=______.答案:圓的極坐標方程為ρ=4cosθ,圓的方程為:x2+y2=4x,圓心為C(2,0),點P的極坐標為(4,π3),所以P的直角坐標(2,23),所以|CP|=(2-2)2+(23-0)2=23.故為:23.15.平面α的一個法向量為v1=(1,2,1),平面β的一個法向量為為v2=(-2,-4,10),則平面α與平面β()A.平行B.垂直C.相交D.不確定答案:∵平面α的一個法向量為v1=(1,2,1),平面β的一個法向量為v2=(-2,-4,10),∵v1?v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故選B16.(幾何證明選講選做題)如圖,梯形,,是對角線和的交點,,則

。

答案:1:6解析:,

,,∵,,而∴。17.要證明,可選擇的方法有以下幾種,其中最合理的是()

A.綜合法

B.分析法

C.反證法

D.歸納法答案:B18.已知a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,則λ=______.答案:∵a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,∴a∥b.∴存在實數k,使得a=kb,∴3λ=k(λ+1)6=3kλ+6=2λk,解得k=2λ=2,故為219.下面的結構圖,總經理的直接下屬是()

A.總工程師和專家辦公室

B.開發(fā)部

C.總工程師、專家辦公室和開發(fā)部

D.總工程師、專家辦公室和所有七個部答案:C20.將兩個數a=8,b=17交換,使a=17,b=8,下面語句正確一組是()

A.

B.

C.

D.

答案:B21.已知隨機變量X的分布列為:P(X=k)=,k=1,2,…,則P(2<X≤4)等于()

A.

B.

C.

D.答案:A22.參數方程x=cosαy=1+sinα(α為參數)化成普通方程為

______.答案:∵x=cosαy=1+sinα(α為參數)∴x2+(y-1)2=cos2α+sin2α=1.即:參數方程x=cosαy=1+sinα(α為參數)化成普通方程為:x2+(y-1)2=1.故為:x2+(y-1)2=1.23.已知點P(3,m)在以點F為焦點的拋物線x=4t2y=4t(t為參數)上,則|PF|的長為______.答案:∵拋物線x=4t2y=4t(t為參數)上,∴y2=4x,∵點P(3,m)在以點F為焦點的拋物線x=4t2y=4t(t為參數)上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故為4.24.已知兩條直線a1x+b1y+1=0和a2x+b2y+1=0都過點A(2,3),則過兩點P1(a1,b1),P2(a2,b2)的直線方程為______.答案:∵A(2,3)是直線a1x+b1y+1=0和a2x+b2y+1=0的公共點,∴2a1+3b1+1=0,且2a2+3b2+1=0,即兩點P1(a1,b1),P2(a2,b2)的坐標都適合方程2x+3y+1=0,∴兩點(a1,b1)和(a2,b2)都在同一條直線2x+3y+1=0上,故點(a1,b1)和(a2,b2)所確定的直線方程是2x+3y+1=0,故為:2x+3y+1=0.25.求證1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).答案:證明:①當n=1時,左邊=2,右邊=13×1×2×3=2,等式成立;②假設當n=k時,等式成立,即1×2+2×3+3×4+…+k(k+1)=13k(k+1)(k+2)則當n=k+1時,左邊=13k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(13k+1)=13(k+1)(k+2)(k+3)即n=k+1時,等式也成立.所以1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2)對任意正整數都成立.26.隨機變量ξ服從二項分布ξ~B(n,p),且Eξ=300,Dξ=200,則p等于()

A.

B.0

C.1

D.答案:D27.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},則方程x2m+y2n=1表示的是雙曲線的概率為______.答案:由題意,方程x2m+y2n=1表示雙曲線時,mn<0,m>0,n<0時,有2×2=4種,m<0,n>0時,有2×3=6種∵m,n的取值共有4×5=20種∴方程x2m+y2n=1表示的是雙曲線的概率為4+620=12故為:1228.參數方程(0<θ<2π)表示()

A.雙曲線的一支,這支過點(1,)

B.拋物線的一部分,這部分過(1,)

C.雙曲線的一支,這支過點(-1,)

D.拋物線的一部分,這部分過(-1,)答案:B29.點B是點A(1,2,3)在坐標平面yOz內的正投影,則|OB|等于()

A.

B.

C.

D.答案:B30.如圖所示的圓盤由八個全等的扇形構成,指針繞中心旋轉,可能隨機停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉動轉盤被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.31.已知正方形ABCD的邊長為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC

|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a32.8的值為()

A.2

B.4

C.6

D.8答案:B33.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關系是()

A.內切

B.相交

C.外切

D.外離答案:B34.設i為虛數單位,若=b+i(a,b∈R),則a,b的值為()

A.a=0,b=1

B.a=1,b=0

C.a=1,b=1

D.a=,b=-1答案:B35.若隨機變量X的概率分布如下表,則表中a的值為()

X

1

2

3

4

P

0.2

0.3

0.3

a

A.1

B.0.8

C.0.3

D.0.2答案:D36.設非零向量、、滿足||=||=||,+=,則<,>=()

A.150°

B.120°

C.60°

D.30°答案:B37.如圖⊙0的直徑AD=2,四邊形ABCD內接于⊙0,直線MN切⊙0于點B,∠MBA=30°,則AB的長為______.答案:連BD,則∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故為:138.假設兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.答案:證明:設⊙O1及⊙O2為互相外切的兩個圓,其一外公切線為A1A2,切點為A1及A2令點O為連心線O1O2的中點,過O作OA⊥A1A2,由直角梯形的中位線性質得:OA=12(O1A1+O2A2)=12O1O2,∴以O1O2為直徑,即以O為圓心,OA為半徑的圓必與直線A1A2相切,同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線.39.根據一組數據判斷是否線性相關時,應選用()

A.散點圖

B.莖葉圖

C.頻率分布直方圖

D.頻率分布折線圖答案:A40.在極坐標系中,曲線ρ=2cosθ所表示圖形的面積為______.答案:將原極坐標方程為p=2cosθ,化成:p2=2ρcosθ,其直角坐標方程為:∴x2+y2=2x,是一個半徑為1的圓,其面積為π.故填:π.41.如圖:在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點.若則下列向量中與相等的向量是()

A.

B.

C.

D.

答案:A42.如圖,一個空間幾何體的正視圖、側視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長為2,那么

這個幾何體的體積為()A.13B.23C.43D.2答案:根據三視圖,可知該幾何體是三棱錐,右圖為該三棱錐的直觀圖,三棱錐的底面是一個腰長是2的等腰直角三角形,∴底面的面積是12×2×2=2垂直于底面的側棱長是2,即高為2,∴三棱錐的體積是13×2×2=43故選C.43.以下程序輸入2,3,4運行后,輸出的結果是()

INPUT

a,b,c

a=b

b=c

c=a

PRINT

a,b,c.

A.234

B.324

C.343

D.342答案:C44.以雙曲線x24-y216=1的右焦點為圓心,且被其漸近線截得的弦長為6的圓的方程為______.答案:雙曲線x24-y216=1的右焦點為F(25,0),一條漸近線為2x+y=0.∴所求圓的圓心為(25,0).∵所求圓被漸近線2x+y=0截得的弦長為6,∴圓心為(25,0)到漸近線2x+y=0的距離d=455=4,圓半徑r=9+16=5,∴所求圓的方程是(x-25)2+y2=25.故為(x-25)2+y2=25.45.想要檢驗是否喜歡參加體育活動是不是與性別有關,應該檢驗()

A.H0:男性喜歡參加體育活動

B.H0:女性不喜歡參加體育活動

C.H0:喜歡參加體育活動與性別有關

D.H0:喜歡參加體育活動與性別無關答案:D46.若向量a=(2,-3,3)是直線l的方向向量,向量b=(1,0,0)是平面α的法向量,則直線l與平面α所成角的大小為______.答案:設直線l與平面α所成角為θ,則sinθ=|cos<a,b>|=|a?b||a|

|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直線l與平面α所成角的大小為π6.故為π6.47.正方體的表面積與其外接球表面積的比為()A.3:πB.2:πC.1:2πD.1:3π答案:設正方體的棱長為a,不妨設a=1,正方體外接球的半徑為R,則由正方體的體對角線的長就是外接球的直徑的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面積為:S球=4πR2=3π.則正方體的表面積與其外接球表面積的比為:6:3π=2:π.故選B.48.已知直線l的參數方程為x=12ty=22+32t(t為參數),若以直角坐標系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-π4)

(1)求直線l的傾斜角;

(2)若直線l與曲線C交于A,B兩點,求|AB|.答案:(1)直線參數方程可以化x=tcos60°y=22+tsin60°,根據直線參數方程的意義,這條經過點(0,22),傾斜角為60°的直線.(2)l的直角坐標方程為y=3x+22,ρ=2cos(θ-π4)的直角坐標方程為(x-22)2+(y-22)2=1,所以圓心(22,22)到直線l的距離d=64,∴|AB|=102.49.下面對算法描述正確的一項是:()A.算法只能用自然語言來描述B.算法只能用圖形方式來表示C.同一問題可以有不同的算法D.同一問題的算法不同,結果必然不同答案:算法的特點:有窮性,確定性,順序性與正確性,不唯一性,普遍性算法可以用自然語言、圖形語言,程序語言來表示,故A、B不對同一問題可以用不同的算法來描述,但結果一定相同,故D不對.C對.故應選C.50.由直線y=x+1上的一點向圓(x-3)2+y2=1引切線,則切線長的最小值為()

A.1

B.2

C.

D.3答案:C第2卷一.綜合題(共50題)1.從拋物線y2=4x上一點P引拋物線準線的垂線,垂足為M,且|PM|=5,設拋物線的焦點為F,則△MPF的面積為()

A.6

B.8

C.10

D.15答案:C2.若a=0.30.2,b=20.4,c=0.30.3,則a,b,c三個數的大小關系是:______(用符號“>”連接這三個字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故為:b>a>c.3.如圖,從圓O外一點P引兩條直線分別交圓O于點A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:354.為了評價某個電視欄目的改革效果,在改革前后分別從居民點抽取了100位居民進行調查,經過計算K2≈0.99,根據這一數據分析,下列說法正確的是()

A.有99%的人認為該欄目優(yōu)秀

B.有99%的人認為該欄目是否優(yōu)秀與改革有關系

C.有99%的把握認為電視欄目是否優(yōu)秀與改革有關系

D.沒有理由認為電視欄目是否優(yōu)秀與改革有關系答案:D5.根據下面的要求,求滿足1+2+3+…+n>500的最小的自然數n.

(1)畫出執(zhí)行該問題的程序框圖;

(2)以下是解決該問題的一個程序,但有幾處錯誤,請找出錯誤并予以更正.

i=1S=1n=0DO

S<=500

S=S+i

i=i+1

n=n+1WENDPRINT

n+1END.答案:(1)程序框圖如左圖所示.或者,如右圖所示:(2)①DO應改為WHILE;

②PRINT

n+1

應改為PRINT

n;

③S=1應改為S=0.6.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點,則實數m的取值范圍是(

A.(-∞,1)

B.(121,+∞)

C.[1,121]

D.(1,121)答案:C7.平行線3x-4y-8=0與6x-8y+3=0的距離為______.答案:6x-8y+3=0可化為3x-4y+32=0,故所求距離為|-8-32|32+(-4)2=1910,故為:19108.直線y=k(x-2)+3必過定點,該定點的坐標為()

A.(3,2)

B.(2,3)

C.(2,-3)

D.(-2,3)答案:B9.已知a,b是非零向量,且a,b夾角為π3,則向量p=a丨a丨+b丨b丨的模為______.答案:∵|a|a||=|a||a|=1=|b|b||,a?b=|a|

|b|cosπ3=12|a|

|b|∴p2=|(a|a|+b|b|)2=1+1+2?a|a|?b|b|=2+2×12=3,∴|p|=3.故為3.10.若直線l經過原點和點A(-2,-2),則它的斜率為()

A.-1

B.1

C.1或-1

D.0答案:B11.在空間直角坐標系中,已知點A(1,0,2),B(1,-3,1),點M在y軸上,且M到A與到B的距離相等,則M的坐標是______.答案:設M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故為:(0,-1,0).12.如圖是2010年青年歌手大獎賽中,七位評委為甲、乙兩名選手打出的分數的莖葉圖(其中m為數字0~9中的

一個),去掉一個最高分和一個最低分后,甲、乙兩名選手得分的平均數分別為a1,a2,則一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小與m的值有關答案:由題意知去掉一個最高分和一個最低分以后,兩組數據都有五個數據,代入數據可以求得甲和乙的平均分a1=1+4+5×35+80=84,a2=4×3+6+75+80=85,∴a2>a1故選B13.試求288和123的最大公約數是

答案:3解析:,,,.∴和的最大公約數14.______稱為向量的長度(或稱為模),記作

______,______稱為零向量,記作

______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.15.已知直線經過點,傾斜角,設與圓相交與兩點,求點到兩點的距離之積。答案:2解析:把直線代入得,則點到兩點的距離之積為16.對于回歸方程y=4.75x+2.57,當x=28時,y

的估計值是______.答案:∵回歸方程y=4.75x+2.57,∴當x=28時,y的估計值是4.75×28+2.57=135.57.故為:135.57.17.mx+ny=1(mn≠0)與兩坐標軸圍成的三角形面積為______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在兩坐標軸上的截距分別為1m,1n.則mx+ny=1(mn≠0)與兩坐標軸圍成的三角形面積為12|mn|.故為12|mn|.18.設全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},則CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故選B.19.拋物線y2=4px(p>0)的準線與x軸交于M點,過點M作直線l交拋物線于A、B兩點.

(1)若線段AB的垂直平分線交x軸于N(x0,0),求證:x0>3p;

(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點依次為N1,N2,N3,…,當0<p<1時,求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)證明:設直線l方程為y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2?k2p2>0,得0<k2<1.令A(x1,y1)、B(x2,y2),則x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中點坐標為(2P-k2Pk2,2pk).AB垂直平分線為y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次為p,p2,p3,時,AB中垂線與x軸交點依次為N1,N2,N3,(0<p<1).∴點Nn的坐標為(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值為12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).20.已知F1(-8,3),F2(2,3),動點P滿足PF1-PF2=10,則點P的軌跡是______.答案:由于兩點間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點P的軌跡應是一條射線.故為一條射線.21.正十邊形的一個內角是多少度?答案:由多邊形內角和公式180°(n-2),∴每一個內角的度數是180°(n-2)n當n=10時.得到一個內角為180°(10-2)10=144°22.某幾何體的三視圖如圖所示,則這個幾何體的體積是______.答案:由三視圖可知該幾何體為是一平放的直三棱柱,底面是邊長為2的正三角形,棱柱的側棱為3,也為高.V=Sh=34×22

×3=33故為:33.23.一圓形紙片的圓心為O,點Q是圓內異于O點的一個定點,點A是圓周上一動點,把紙片折疊使得點A與點Q重合,然后抹平紙片,折痕CD與OA交于點P,當點A運動時,點P的軌跡為()

A.橢圓

B.雙曲線

C.拋物線

D.圓答案:A24.點(1,2)到原點的距離為()

A.1

B.5

C.

D.2答案:C25.已知函數y=f(n),滿足f(1)=2,且f(n+1)=3f(n),n∈N+,則

f(3)的值為______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.26.與直線2x+y+1=0的距離為的直線的方程是()

A.2x+y=0

B.2x+y-2=0

C.2x+y=0或2x+y-2=0

D.2x+y=0或2x+y+2=0答案:D27.設點P(+,1)(t>0),則||(O為坐標原點)的最小值是()

A.

B.

C.5

D.3答案:A28.如圖,點O是正六邊形ABCDEF的中心,則以圖中點A、B、C、D、E、F、O中的任意一點為始點,與始點不同的另一點為終點的所有向量中,除向量外,與向量共線的向量共有()

A.2個

B.3個

C.6個

D.9個

答案:D29.若對n個向量a1,a2,…,an,存在n個不全為零的實數k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,則稱向量a1,a2,…,an為“線性相關”.依此規(guī)定,請你求出一組實數k1,k2,k3的值,它能說明a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關”.k1,k2,k3的值分別是______(寫出一組即可).答案:設a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關”.則存在實數,k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,則k2=2,k1=-4故為:-4,2,130.經過點M(1,1)且在兩軸上截距相等的直線是______.答案:①當所求的直線與兩坐標軸的截距不為0時,設該直線的方程為x+y=a,把(1,1)代入所設的方程得:a=2,則所求直線的方程為x+y=2;②當所求的直線與兩坐標軸的截距為0時,設該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x31.某學校為了調查高三年級的200名文科學生完成課后作業(yè)所需時間,采取了兩種抽樣調查的方式:第一種由學生會的同學隨機抽取20名同學進行調查;第二種由教務處對該年級的文科學生進行編號,從001到200,抽取學號最后一位為2的同學進行調查,則這兩種抽樣的方法依次為()A.分層抽樣,簡單隨機抽樣B.簡單隨機抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機抽樣,系統(tǒng)抽樣答案:第一種由學生會的同學隨機抽取20名同學進行調查;這是一種簡單隨機抽樣,第二種由教務處對該年級的文科學生進行編號,從001到200,抽取學號最后一位為2的同學進行調查,對于個體比較多的總體,采用系統(tǒng)抽樣,故選D.32.利用斜二測畫法能得到的()

①三角形的直觀圖是三角形;

②平行四邊形的直觀圖是平行四邊形;

③正方形的直觀圖是正方形;

④菱形的直觀圖是菱形.

A.①②

B.①

C.③④

D.①②③④答案:A33.一圓錐側面展開圖為半圓,平面α與圓錐的軸成45°角,則平面α與該圓錐側面相交的交線為()A.圓B.拋物線C.雙曲線D.橢圓答案:設圓錐的母線長為R,底面半徑為r,則:πR=2πr,∴R=2r,∴母線與高的夾角的正弦值=rR=12,∴母線與高的夾角是30°.由于平面α與圓錐的軸成45°>30°;則平面α與該圓錐側面相交的交線為橢圓.故選D.34.先后拋擲兩枚均勻的正方體骰子(它們的六個面分別標有點數1、2、3、4、5、6),骰子朝上的面的點數分別為X、Y,則log2XY=1的概率為()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,滿足條件的X、Y有3對而骰子朝上的點數X、Y共有36對∴概率為336=112故選C.35.若A是圓x2+y2=16上的一個動點,過點A向y軸作垂線,垂足為B,則線段AB中點C的軌跡方程為()

A.x2+2y2=16

B.x2+4y2=16

C.2x2+y2=16

D.4x2+y2=16答案:D36.在極坐標系中,點(2,π6)到直線ρsinθ=2的距離等于______.答案:在極坐標系中,點(2

,

π6)化為直角坐標為(3,1),直線ρsinθ=2化為直角坐標方程為y=2,(3,1),到y(tǒng)=2的距離1,即為點(2

,

π6)到直線ρsinθ=2的距離1,故為:1.37.圓心在x軸上,且過兩點A(1,4),B(3,2)的圓的方程為______.答案:設圓心坐標為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經過兩點A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=2038.函數y=x2x4+9(x≠0)的最大值為______,此時x的值為______.答案:y=x2x4+9=1x2+9x2≤129=16,當且僅當x2=9x2,即x=±3時取等號.故為:16,

±339.下列說法正確的是()

A.向量

與向量是共線向量,則A、B、C、D必在同一直線上

B.向量與平行,則與的方向相同或相反

C.向量的長度與向量的長度相等

D.單位向量都相等答案:C40.如果方程x2+(m-1)x+m2-2=0的兩個實根一個小于1,另一個大于1,那么實數m的取值范圍是()

A.

B.(-2,0)

C.(-2,1)

D.(0,1)答案:C41.下列關于算法的說法不正確的是()A.算法必須在有限步操作之后停止.B.求解某一類問題的算法是唯一的.C.算法的每一步必須是明確的.D.算法執(zhí)行后一定產生確定的結果.答案:因為算法具有有窮性、確定性和可輸出性.由算法的特性可知,A是指的有窮性;C是確定性;D是可輸出性.而解決某一類問題的算法不一定唯一,例如求排序問題算法就不唯一,所以,給出的說法不正確的是B.故選B.42.某校有老師200人,男學生1200人,女學生1000人.現用分層抽樣的方法從所有師生中抽取一個容量為n的樣本;已知從女學生中抽取的人數為80人,則n=______.答案:∵某校有老師200人,男學生1

200人,女學生1

000人.∴學校共有200+1200+1000人由題意知801000=n200+1200+1000,∴n=192.故為:19243.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實數解,求a的值.答案:設方程的實根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復數相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-344.設a,b,λ都為正數,且a≠b,對于函數y=x2(x>0)圖象上兩點A(a,a2),B(b,b2).

(1)若AC=λCB,則點C的坐標是______;

(2)過點C作x軸的垂線,交函數y=x2(x>0)的圖象于D點,由點C在點D的上方可得不等式:______.答案:(1)設點C(x,y),因為點A(a,a2),B(b,b2),AC=λCB,則(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因為點C在點D的上方,則y>yD,所以a2+λb21+λ>(a+λb1+λ)245.某超市推出如下優(yōu)惠方案:

(1)一次性購物不超過100元不享受優(yōu)惠;

(2)一次性購物超過100元但不超過300元的一律九折;

(3)一次性購物超過300元的一律八折,有人兩次購物分別付款80元,252元.

如果他一次性購買與上兩次相同的商品,則應付款______.答案:該人一次性購物付款80元,據條件(1)、(2)知他沒有享受優(yōu)惠,故實際購物款為80元;另一次購物付款252元,有兩種可能,其一購物超過300元按八折計,則實際購物款為2520.8=315元.其二購物超過100元但不超過300元按九折計算,則實際購物款為2520.9=280元.故該人兩次購物總價值為395元或360元,若一次性購買這些商品應付款316元或288元.故為316元或288元.46.將某班的60名學生編號為:01,02,…,60,采用系統(tǒng)抽樣方法抽取一個容量為5的樣本,且隨機抽得的一個號碼為04,則剩下的四個號碼依次是______.答案:用系統(tǒng)抽樣抽出的5個學生的號碼從小到大成等差數列,隨機抽得的一個號碼為04則剩下的四個號碼依次是16、28、40、52.故為:16、28、40、5247.山東魯潔棉業(yè)公司的科研人員在7塊并排、形狀大小相同的試驗田上對某棉花新品種進行施化肥量x對產量y影響的試驗,得到如下表所示的一組數據(單位:kg).

施化肥量x15202530354045棉花產量y330345365405445450455(1)畫出散點圖;

(2)判斷是否具有相關關系.答案:(1)根據已知表格中的數據可得施化肥量x和產量y的散點圖如下所示:(2)根據(1)中散點圖可知,各組數據對應點大致分布在一個條形區(qū)域內(一條直線附近)故施化肥量x和產量y具有線性相關關系.48.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過

B作BD⊥AC于D,BD交⊙O于E點,若AE平分∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D49.直線(t為參數)的傾斜角是()

A.20°

B.70°

C.45°

D.135°答案:D50.已知矩陣A=b-2-7a的逆矩陣是B=a273,則a+b=______.答案:根據矩陣A=b-2-7a的逆矩陣是B=a273,得a273b-2-7a=1001,∴ab-14=1-2a+2a=07b-21=0-14+3a=1,解得a=5b=3∴a+b=8.故為:8.第3卷一.綜合題(共50題)1.全稱命題“任意x∈Z,2x+1是整數”的逆命題是()

A.若2x+1是整數,則x∈Z

B.若2x+1是奇數,則x∈Z

C.若2x+1是偶數,則x∈Z

D.若2x+1能被3整除,則x∈Z

E.若2x+1是整數,則x∈Z答案:A2.甲、乙、丙、丁四名射擊選手在選撥賽中所得的平均環(huán)數,其方差S2如下表所示,則選送參加決賽的最佳人選是()

8

9

9

8

S2

5.7

6.2

5.7

6.4

A.甲

B.乙

C.丙

D.丁答案:C3.點P,設△ABC的面積是△PBC的面積的m倍,那么m=()

A.1

B.

C.4

D.2答案:B4.已知拋物線y2=4x的焦點為F,準線與x軸的交點為M,N為拋物線上的一點,且|NF|=32|MN|,則∠NMF=()A.π6B.π4C.π3D.5π12答案:設N到準線的距離等于d,由拋物線的定義可得d=|NF|,

由題意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故選A.5.如圖:在長方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分別是線段AB,BC上的點,且EB=FB=1.

(1)求二面角C-DE-C1的大??;

(2)求異面直線EC1與FD1所成角的大小;

(3)求異面直線EC1與FD1之間的距離.答案:(1)以A為原點AB,AD,AA1分別為x軸、y軸、z軸的正向建立空間直角坐標系,則有D(0,3,0),D1(0,3,2),E(3,0,0),F(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),FD1=(-4,2,2)(3分)設向量n=(x,y,z)與平面C1DE垂直,則有n⊥DEn⊥EC1?3x-3y=0x+3y+2z=0?x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),則n0是一個與平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)與平面CDE垂直,∴n0與AA1所成的角θ為二面角C-DE-C1的平面角.(6分)∴cosθ=n0?AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小為arccos63.(8分)(2)設EC1與FD1所成角為β,(1分)則cosβ=EC1?FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故異面直線EC1與FD1所成角的大小為arccos2114(11分)(3)設m=(x,y,z)m⊥EC1m⊥FD1?m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)設所求距離為d,則d=|m?D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).6.扇形周長為10,則扇形面積的最大值是()A.52B.254C.252D.102答案:設半徑為r,弧長為l,則周長為2r+l=10,面積為s=12lr,因為10=2r+l≥22rl,所以rl≤252,所以s≤254故選B7.如圖,AB是圓O的直徑,CD是圓O的弦,AB與CD交于E點,且AE:EB=3:1、CE:ED=1:1,CD=83,則直徑AB的長為______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故為:168.P為△ABC內一點,且PA+3PB+7PC=0,則△PAC與△ABC面積的比為______.答案:(如圖)分別延長

PB、PC

B1、C1,使

PB1=3PB,PC1=7PC,則由已知可得:PA+PB1+PC1=0,故點P是三角形

AB1C1

的重心,設三角形

AB1C1

的面積為

3S,則S△APC1=S△APB1=S△PB1C1=S,而S△APC=17S△APC1=S7,S△ABP=13S△APB1=S3,S△PBC=13×17S△PB1C1=S21,所以△PAC與△ABC面積的比為:S7S7+S3+S21=311,故為:3119.數據:1,1,3,3的眾數和中位數分別是()

A.1或3,2

B.3,2

C.1或3,1或3

D.3,3答案:A10.在對吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()

A.若隨機變量K2的觀測值k>6.635,我們有99%的把握說明吸煙與患肺病有關,則若某人吸煙,那么他有99%的可能患有肺病

B.若由隨機變量求出有99%的把握說吸煙與患肺病有關,則在100個吸煙者中必有99個人患有肺病

C.若由隨機變量求出有95%的把握說吸煙與患肺病有關,那么有5%的可能性使得推斷錯誤

D.以上說法均不正確答案:D11.已知sint+cost=1,設s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0則cost=0,sint=1或cost=1,sint=0,當cost=0,sint=1時,s=cost+isint=i則f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)當cost=1,sint=0時,s=cost+isint=1則f(s)=1+s+s2+…sn=n+112.設集合A={x|},則A∩B等于(

A.

B.

C.

D.答案:B13.在極坐標系下,圓C:ρ2+4ρsinθ+3=0的圓心坐標為()

A.(2,0)

B.

C.(2,π)

D.答案:D14.若已知中心在坐標原點的橢圓過點(1,233),且它的一條準線方程為x=3,則該橢圓的方程為______.答案:設橢圓的方程是x2a2+y2b2=1,由題設,中心在坐標原點的橢圓過點(1,233),且它的一條準線方程為x=3,∴1a2+43b2=1,a2c=3,又a2=c2+b2三式聯(lián)立可以解得a=3,b=2,c=1或a=7,b=143,c=73故該橢圓的方程為x23+y22=1或x27+y2149=1故應填x23+y22=1或x27+y2149=115.某產品的廣告費用x與銷售額y的統(tǒng)計數據如下表:

廣告費用x(萬元)

2

3

4

5

銷售額y(萬元)

27

39

48

54

根據上表可得回歸方程y=bx+a中的b為9.4,據此模型預報廣告費用為6萬元時銷售額為()

A.65.5萬元

B.66.2萬元

C.67.7萬元

D.72.0萬元答案:A16.已知D、E、F分別是△ABC的邊BC、CA、AB的中點,且,則下列命題中正確命題的個數為(

①;

③;

A.1

B.2

C.3

D.4

答案:C17.四面體ABCD中,設M是CD的中點,則化簡的結果是()

A.

B.

C.

D.答案:A18.已知函數f(x)=ax,(a>0,a≠1)的圖象經過點P(12,12),則常數a的值為()A.2B.4C.12D.14答案:∵函數f(x)=ax,(a>0,a≠1)的圖象經過點P(12,12),∴a12=12,?a=14.故選D.19.若a<b<c,x<y<z,則下列各式中值最大的一個是()

A.ax+cy+bz

B.bx+ay+cz

C.bx+cy+az

D.ax+by+cz答案:D20.拋物線頂點在坐標原點,以y軸為對稱軸,過焦點且與y軸垂直的弦長為16,則拋物線方程為______.答案:∵過焦點且與對稱軸y軸垂直的弦長等于p的2倍.∴所求拋物線方程為x2=±16y.故為:x2=±16y.21.求證:定義在實數集上的單調減函數y=f(x)的圖象與x軸至多只有一個公共點.答案:證明:假設函數y=f(x)的圖象與x軸有兩個交點…(2分)設交點的橫坐標分別為x1,x2,且x1<x2.因為函數y=f(x)在實數集上單調遞減所以f(x1)>f(x2),…(6分)這與f(x1)=f(x2)=0矛盾.所以假設不成立.

…(12分)故原命題成立.…(14分)22.隋機變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C23.已知正方形ABCD的邊長為1,=,=,=,則的模等于(

A.0

B.2+

C.

D.2答案:D24.若2x+3y=1,求4x2+9y2的最小值,并求出最小值點.答案:由柯西不等式(4x2+9y2)(12+12)≥(2x+3y)2=1,∴4x2+9y2≥12.當且僅當2x?1=3y?1,即2x=3y時取等號.由2x=3y2x+3y=1得x=14y=16∴4x2+9y2的最小值為12,最小值點為(14,16).25.(1)在數軸上求一點的坐標,使它到點A(9)與到點B(-15)的距離相等;

(2)在數軸上求一點的坐標,使它到點A(3)的距離是它到點B(-9)的距離的2倍.答案:(1)設該點為M(x),根據題意,得A、M兩點間的距離為d(A,M)=|x-9|,B、M兩點間的距離為d(M,B)=|-15-x|,結合題意,可得|x-9|=|-15-x|,∴x-9=15+x或x-9=-15-x,解之得x=-3,得M的坐標為-3故所求點的坐標為-3.(2)設該點為N(x'),則A、N兩點間的距離為d(A,N)=|x'-3|,B、N兩點間的距離為d(N,B)=|-9-x'|,根據題意有|x'-3|=2|9+x'|,∴x'-3=18+2x'或x'-3=-18-2x',解之得x'=-21,或x'=-5.故所求點的坐標是-21或-5.26.拋擲兩顆骰子,所得點數之和為ξ,那么ξ=4表示的隨機試驗結果是()

A.一顆是3點,一顆是1點

B.兩顆都是2點

C.兩顆都是4點

D.一顆是3點,一顆是1點或兩顆都是2點答案:D27.設,則之間的大小關系是

.答案:b>a>c解析:略28.設O是坐標原點,F是拋物線y2=2px(p>0)的焦點,A是拋物線上的一點,FA與x軸正向的夾角為60°,則|OA|為______.答案:過A作AD⊥x軸于D,令FD=m,則FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故為:212p29.如圖,已知⊙O的直徑AB=5,C為圓周上一點,BC=4,過點C作⊙O的切線l,過點A作l的垂線AD,垂足為D,則CD=______.

答案:如圖,連接OC,由題意DC是切線可得出OC⊥DC,再過過A作AE⊥OC于E,故有四邊形AECD是矩形,可得AE=CD又⊙O的直徑AB=5,C為圓周上一點,BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故為:125.30.若a=0.30.2,b=20.4,c=0.30.3,則a,b,c三個數的大小關系是:______(用符號“>”連接這三個字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故為:b>a>c.31.橢圓的中心在坐標原點,焦點在坐標軸上,兩頂點分別是(3,0),(0,2),則此橢圓的方程是______.答案:依題意,此橢圓方程為標準方程,且焦點在x軸上,設為x2a2+y2b2=1∵橢圓的兩頂點分別是(3,0),(0,2),∴a=3,b=2∵∴此橢圓的標準方程為:x29+y22=1.故為:x29+y22=1.32.已知圓M的方程為:(x+3)2+y2=100及定點N(3,0),動點P在圓M上運動,線段PN的垂直平分線交圓M的半徑MP于Q點,設點Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據橢圓的定義,點Q的軌跡是M,N為焦點,以10為長軸長的橢圓,所以2a=10,2c=6,所以b=4,所以,點Q的軌跡方程為:x225+y216=1故為:x225+y216=133.過點P(0,-2)的雙曲線C的一個焦點與拋物線x2=-16y的焦點相同,則雙曲線C的標準方程是()

A.

B.

C.

D.答案:C34.下列在曲線上的點是()

A.

B.

C.

D.答案:D35.“a>1”是“1a<1”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由1a<1得:當a>0時,有1<a,即a>1;當a<0時,不等式恒成立.所以1a<1?a>1或a<0從而a>1是1a<1的充分不必要條件.故應選:A36.電視機的使用壽命顯像管開關的次數有關.某品牌電視機的顯像管開關了10000次還能繼續(xù)使用的概率是0.96,開關了15000次后還能繼續(xù)使用的概率是0.80,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論