2023年楚雄醫(yī)藥高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年楚雄醫(yī)藥高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年楚雄醫(yī)藥高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年楚雄醫(yī)藥高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年楚雄醫(yī)藥高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年楚雄醫(yī)藥高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.函數(shù)數(shù)列{fn(x)}滿足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時,f1(x)=x1+x22,已知,顯然成立②假設(shè)當(dāng)n=K(K∈N*)4時,猜想成立,即fk(x)=x1+kx2則當(dāng)n=K+1時,fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對n=K+1時,猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對一切n∈N*都成立.2.在我市新一輪農(nóng)村電網(wǎng)改造升級過程中,需要選一個電阻調(diào)試某村某設(shè)備的線路,但調(diào)試者手中必有阻值分別為0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七種阻值不等的定值電阻,他用分?jǐn)?shù)法進(jìn)行優(yōu)選試驗時,依次將電阻從小到大安排序號,如果第1個試點與第2個試點比較,第1個試點是一個好點,則第3個試點值的阻值為[

]A、1KΩ

B、1.3KΩ

C、5KΩ

D、1KΩ或5KΩ答案:C3.對于回歸方程y=4.75x+2.57,當(dāng)x=28時,y

的估計值是______.答案:∵回歸方程y=4.75x+2.57,∴當(dāng)x=28時,y的估計值是4.75×28+2.57=135.57.故為:135.57.4.設(shè)A1,A2,A3,A4是平面直角坐標(biāo)系中兩兩不同的四點,若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,則稱A3,A4調(diào)和分割A(yù)1,A2,已知點C(c,0),D(d,O)(c,d∈R)調(diào)和分割點A(0,0),B(1,0),則下面說法正確的是()A.C可能是線段AB的中點B.D可能是線段AB的中點C.C,D可能同時在線段AB上D.C,D不可能同時在線段AB的延長線上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是線段AB的中點,則c=12,代入(1)d不存在,故C不可能是線段AB的中,A錯誤;同理B錯誤;若C,D同時在線段AB上,則0≤c≤1,0≤d≤1,代入(1)得c=d=1,此時C和D點重合,與條件矛盾,故C錯誤.故選D5.命題“若b≠3,則b2≠9”的逆命題是______.答案:根據(jù)“若p則q”的逆命題是“若q則p”,可得命題“若b≠3,則b2≠9”的逆命題是若b2≠9,則b≠3.故為:若b2≠9,則b≠3.6.______稱為向量;常用

______表示,記為

______,又可用小寫字線表示為

______.答案:既有大小,又有方向的量叫做向量;表示方法:①常用有帶箭頭的線段來表示,記為有向線段AB,②又可用小寫字線表示為:a,b,c…,故為:既有大小,又有方向的量;有帶箭頭的線段,有向線段AB,a,b,c….7.平面內(nèi)有n條直線,其中無任何兩條平行,也無任何三條共點,求證:這n條直線把平面分割成12(n2+n+2)塊.答案:證明:(1)當(dāng)n=1時,1條直線把平面分成2塊,又12(12+1+2)=2,命題成立.(2)假設(shè)n=k時,k≥1命題成立,即k條滿足題設(shè)的直線把平面分成12(k2+k+2)塊,那么當(dāng)n=k+1時,第k+1條直線被k條直線分成k+1段,每段把它們所在的平面塊又分成了2塊,因此,增加了k+1個平面塊.所以k+1條直線把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]塊,這說明當(dāng)n=k+1時,命題也成立.由(1)(2)知,對一切n∈N*,命題都成立.8.已知實數(shù)x,y滿足3x+4y+10=0,那么x2+y2的最小值為______.答案:設(shè)P(x,y),則|OP|=x2+y2,即x2+y2的幾何意義表示為直線3x+4y+10=0上的點P到原點的距離的最小值.則根據(jù)點到直線的距離公式得點P到直線3x+4y+10=0的距離d=|10|32+42=105=2.故為:2.9.如圖所示,設(shè)P為△ABC所在平面內(nèi)的一點,并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C10.參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為

______.答案:∵x=cosαy=1+sinα(α為參數(shù))∴x2+(y-1)2=cos2α+sin2α=1.即:參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為:x2+(y-1)2=1.故為:x2+(y-1)2=1.11.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()

A.3

B.

C.

D.4答案:B12.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.13.口袋內(nèi)有100個大小相同的紅球、白球和黑球,其中有45個紅球,從中摸出1個球,摸出白球的概率為0.23,則摸出黑球的概率為______.答案:∵口袋內(nèi)有100個大小相同的紅球、白球和黑球從中摸出1個球,摸出白球的概率為0.23,∴口袋內(nèi)白球數(shù)為32個,又∵有45個紅球,∴為32個.從中摸出1個球,摸出黑球的概率為32100=0.32故為0.3214.給出一個程序框圖,輸出的結(jié)果為s=132,則判斷框中應(yīng)填()

A.i≥11

B.i≥10

C.i≤11

D.i≤12

答案:A15.過點A(a,4)和B(-1,a)的直線的傾斜角等于45°,則a的值是______.答案:∵過點A(a,4)和B(-1,a)的直線的傾斜角等于45°,∴kAB=a-4-1-a=tan45°=1,∴a=32.故為:32.16.為了調(diào)查高中生的性別與是否喜歡足球之間有無關(guān)系,一般需要收集以下數(shù)據(jù)______.答案:為了調(diào)查高中生的性別與是否喜歡足球之間有無關(guān)系,一般需要收集男女生中喜歡或不喜歡足球的人數(shù),再得出2×2列聯(lián)表,最后代入隨機(jī)變量的觀測值公式,得出結(jié)果.故為:男女生中喜歡或不喜歡足球的人數(shù).17.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P.若PB=1,PD=3,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.18.一個總體中有100個個體,隨機(jī)編號為0,1,2,3,…,99,依編號順序平均分成10個小組,組號依次為1,2,3,…10.現(xiàn)用系統(tǒng)抽樣方法抽取一個容量為10的樣本,規(guī)定如果在第1組隨機(jī)抽取的號碼為m,那么在第k組中抽取的號碼個位數(shù)字與m+k號碼的個位數(shù)字相同,若m=6,則在第7組中抽取的號碼是()

A.66

B.76

C.63

D.73答案:C19.設(shè)函數(shù)f(x)=(2a-1)x+b是R上的減函數(shù),則a的范圍為______.答案:∵f(x)=(2a-1)x+b是R上的減函數(shù),∴2a-1<0,解得a<12.故為:a<12.20.已知一個球與一個正三棱柱的三個側(cè)面和兩個底面相切,若這個球的體積是32π3,則這個三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h(yuǎn)=4.設(shè)其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48321.如圖,I表示南北方向的公路,A地在公路的正東2km處,B地在A地北偏東60°方向2km處,河流沿岸PQ(曲線)上任一點到公路l和到A地距離相等,現(xiàn)要在河岸PQ上選一處M建一座碼頭,向A,B兩地轉(zhuǎn)運貨物,經(jīng)測算從M到A,B修建公路的費用均為a萬元/km,那么修建這兩條公路的總費用最低是(單位萬元)()

A.(2+)a

B.5a

C.2(+1)a

D.6a

答案:B22.節(jié)假日時,國人發(fā)手機(jī)短信問候親友已成為一種時尚,若小李的40名同事中,給其發(fā)短信問候的概率為1,0.8,0.5,0的人數(shù)分別是8,15,14,3(人),通常情況下,小李應(yīng)收到同事問候的信息條數(shù)為()

A.27

B.37

C.38

D.8答案:A23.直線y=kx+1與橢圓x29+y24=1的位置關(guān)系是()A.相交B.相切C.相離D.不確定答案:∵直線y=kx+1過定點(0,1),把(0,1)代入橢圓方程的左端有0+14<1,即(0,1)在橢圓內(nèi)部,∴直線y=kx+1與橢圓x29+y24=1必相交,

因此可排除B、C、D;

故選A.24.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2

(1)求a?b;

(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?

(-3e1+2e2)=

-6e12+e1

?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727

×7=-12,又0<<a,b><π,所以<a,b>=2π3.25.已知向量a=(8,x,x).b=(x,1,2),其中x>0.若a∥b,則x的值為()

A.8

B.4

C.2

D.0答案:B26.閱讀如圖所示的程序框,若輸入的n是100,則輸出的變量S的值是()A.5051B.5050C.5049D.5048答案:根據(jù)流程圖所示的順序,該程序的作用是累加并輸出S=100+99+98+…+2,∵100+99+98+…+2=5049,故選C.27.i為虛數(shù)單位,復(fù)數(shù)z=i(1-i),則.z在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵復(fù)數(shù)z=i(1-i)=1+i,則.z=1-i,它在復(fù)平面內(nèi)的對應(yīng)點的坐標(biāo)為(1,-1),故.z在復(fù)平面內(nèi)對應(yīng)的點在第四象限,故選D.28.直線2x-y=7與直線3x+2y-7=0的交點是()

A.(3,-1)

B.(-1,3)

C.(-3,-1)

D.(3,1)答案:A29.若函數(shù)f(2x+1)=x2-2x,則f(3)=______.答案:解法一:(換元法求解析式)令t=2x+1,則x=t-12則f(t)=(t-12)2-2t-12=14t2-32t+54∴f(x)=14x2-32x+54∴f(3)=-1解法二:(湊配法求解析式)∵f(2x+1)=x2-2x=14(2x+1)2-32(2x+1)+54∴f(x)=14x2-32x+54∴f(3)=-1解法三:(湊配法求解析式)∵f(2x+1)=x2-2x令2x+1=3則x=1此時x2-2x=-1∴f(3)=-1故為:-130.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.31.(選做題)參數(shù)方程中當(dāng)t為參數(shù)時,化為普通方程為(

)。答案:x2-y2=132.已知正方形ABCD的邊長為1,=,=,=,則|++|等于(

A.0

B.2

C.

D.3答案:B33.“神六”上天并順利返回,讓越來越多的青少年對航天技術(shù)發(fā)生了興趣.某學(xué)校科技小組在計算機(jī)上模擬航天器變軌返回試驗,設(shè)計方案

如圖:航天器運行(按順時針方向)的軌跡方程為x2100+y225=1,變軌(航天器運行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以y軸為

對稱軸、M(0,647)為頂點的拋物線的實線部分,降落點為D(8,0),觀測點A(4,0)、B(6,0)同時跟蹤航天器.試問:當(dāng)航天器在x軸上方時,觀測點A、B測得離航天器的距離分別為______時航天器發(fā)出變軌指令.答案:設(shè)曲線方程為y=ax2+647,由題意可知,0=a?64+647.∴a=-17,∴曲線方程為y=-17x2+647.設(shè)變軌點為C(x,y),根據(jù)題意可知,拋物線方程與橢圓方程聯(lián)立,可得4y2-7y-36=0,y=4或y=-94(不合題意,舍去).∴y=4.∴x=6或x=-6(不合題意,舍去).∴C點的坐標(biāo)為(6,4),|AC|=25,|BC|=4.故為:25、4.34.函數(shù)y=a|x|(a>1)的圖象是()

A.

B.

C.

D.

答案:B35.某學(xué)校為了了解學(xué)生的日平均睡眠時間(單位:h),隨機(jī)選擇了n名同學(xué)進(jìn)行調(diào)查,下表是這n名同學(xué)的日平均睡眠時間的頻率分布表:

序號(i)分組(睡眠時間)頻數(shù)(人數(shù))頻率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,試確定x、y、z、m的值;

(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如[4,5)的中點值4.5)作為代表.若據(jù)此計算的這n名學(xué)生的日平均睡眠時間的平均值為6.68.求a、b的值.答案:(1)樣本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均時間為:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454

①(9分)又4+10+a+b+4=50,即a+b=32

②由①,②解得:a=13,b=1.(12分)36.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點,E為AD的中點,則OE=______(用a,b,c表示)答案:在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點,E為AD的中點,∴OE=12(OA+OD)=OA2+OD2=12a+12×12(OB+OC)=12a+14(b+c)=12a+14b+14c,故為:12a+14b+14c.37.已知兩個函數(shù)f(x)和g(x)的定義域和值域都是集合1,2,3,其定義如下表:

表1:

x123f(x)231表2:

x123g(x)321則方程g[f(x)]=x的解集為______.答案:由題意得,當(dāng)x=1時,g[f(1)]=g[2]=2不滿足方程;當(dāng)x=2時,g[f(2)]=g[3]=1不滿足方程;x=3,g[f(3)]=g[1]=3滿足方程,是方程的解.故為:{3}38.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)

=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.39.將參數(shù)方程x=2sinθy=1+2cos2θ(θ為參數(shù),θ∈R)化為普通方程,所得方程是______.答案:由x=2sinθ

①y=1+2cos2θ

②,因為θ∈R,所以-1≤sinθ≤1,則-2≤x≤2.由①兩邊平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故為y=-x2+3(-2≤x≤2).40.在四邊形ABCD中有AC=AB+AD,則它的形狀一定是______.答案:由向量加法的平行四邊形法則及AC=AB+AD,知四邊形ABCD為平行四邊形,故為:平行四邊形.41.設(shè)雙曲線的焦點在x軸上,兩條漸近線為y=±12x,則雙曲線的離心率e=______.答案:依題意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故為52.42.為了調(diào)查甲、乙兩個網(wǎng)站受歡迎的程度,隨機(jī)選取了14天,統(tǒng)計上午8:00-10:00間各自的點擊量,得如下所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖:

(1)甲、乙兩個網(wǎng)站點擊量的極差,中位數(shù)分別是多少?

(2)甲網(wǎng)站點擊量在[10,40]間的頻率是多少?(結(jié)果用分?jǐn)?shù)表示)

(3)甲、乙兩個網(wǎng)站哪個更受歡迎?并說明理由。答案:解:(1)甲網(wǎng)站的極差為73-8=65,乙網(wǎng)站的極差為71-5=66;甲網(wǎng)站的中位數(shù)是56.5,乙網(wǎng)站的中位數(shù)是36.5。(2)甲網(wǎng)站點擊量在[10,40]間的頻率是;(3)甲網(wǎng)站的點擊量集中在莖葉圖的下方,而乙網(wǎng)站的點擊量集中在莖葉圖的上方,從數(shù)據(jù)的分布情況來看,甲網(wǎng)站更受歡迎。43.設(shè)隨機(jī)事件A、B,P(A)=35,P(B|A)=12,則P(AB)=______.答案:由條件概率的計算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故為310.44.在甲、乙兩個盒子里分別裝有標(biāo)號為1、2、3、4的四個小球,現(xiàn)從甲、乙兩個盒子里各取出1個小球,每個小球被取出的可能性相等.

(1)求取出的兩個小球上標(biāo)號為相鄰整數(shù)的概率;

(2)求取出的兩個小球上標(biāo)號之和能被3整除的概率;

(3)求取出的兩個小球上標(biāo)號之和大于5整除的概率.答案:甲、乙兩個盒子里各取出1個小球計為(X,Y)則基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)總數(shù)為16種.(1)其中取出的兩個小球上標(biāo)號為相鄰整數(shù)的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種故取出的兩個小球上標(biāo)號為相鄰整數(shù)的概率P=38;(2)其中取出的兩個小球上標(biāo)號之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5種故取出的兩個小球上標(biāo)號之和能被3整除的概率為516;(3)其中取出的兩個小球上標(biāo)號之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6種故取出的兩個小球上標(biāo)號之和大于5的概率P=3845.已知x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,則a+b=______.答案:∵x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,∴(-3-2i)2+a(-3-2i)+b=0,化為5-3a+b+(12-2a)i=0.根據(jù)復(fù)數(shù)相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故為19.46.用0,1,2,3組成沒有重復(fù)數(shù)字的四位數(shù),其中奇數(shù)有()

A.8個

B.10個

C.18個

D.24個答案:A47.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標(biāo)原點,n∈N*.已知OP1=(2,0),則OP2010的坐標(biāo)為______.答案:A=1011,B=20AA=1011

1011

=1021A3=111

121

=1031依此類推A2009=1020101∴A2009B=1020101

20=24018∴OP2010的坐標(biāo)為(2,4018)故為:(2,4018)48.在極坐標(biāo)系中,曲線ρ=4sinθ和ρcosθ=1相交于點A、B,則|AB|=______.答案:將其化為直角坐標(biāo)方程為x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,則|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故為:23.49.

008年北京成功舉辦了第29屆奧運會,中國取得了51金、21銀、28銅的驕人成績.下表為北京奧運會官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票價格,某球迷賽前準(zhǔn)備用12000元預(yù)定15張下表中球類比賽的門票:

比賽項目

票價(元/場)

籃球

1000

足球

800

乒乓球

500

若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,這個球迷想預(yù)定上表中三種球類門票,其中足球門票數(shù)與乒乓球門票數(shù)相同,且足球門票的費用不超過男籃門票的費用,則可以預(yù)訂男籃門票數(shù)為

A.2

B.3

C.4

D.5

答案:D50.已知f(x+1)=x2+2x+3,則f(2)的值為______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.第2卷一.綜合題(共50題)1.圓的極坐標(biāo)方程為ρ=2cos(θ+π3),則該圓的圓心的極坐標(biāo)是______.答案:∵ρ=2cos(θ+π3),展開得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圓心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圓心的極坐標(biāo)是(1,-π3).故為(1,-π3).2.如果過點A(x,4)和(-2,x)的直線的斜率等于1,那么x=()A.4B.1C.1或3D.1或4答案:由于直線的斜率等于1,故1=4-xx-(-2),解得x=1故選B3.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點D的坐標(biāo).答案:設(shè)D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).4.已知:如圖,四邊形ABCD內(nèi)接于⊙O,,過A點的切線交CB的延長線于E點,求證:AB2=BE·CD。

答案:證明:連結(jié)AC,因為EA切⊙O于A,所以∠EAB=∠ACB,因為,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四邊形ABCD內(nèi)接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。5.已知點A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的動點,直線BP與線段AP的垂直平分線交于點Q.

(1)證明點Q的軌跡是雙曲線,并求出軌跡方程.

(2)若(BQ+BA)?QA=0,求點Q的坐標(biāo).答案:(1)∵點Q在線段AP的垂直平分線上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴點Q的軌跡是以A、B為焦點的雙曲線.(4′)其軌跡方程是x29-y216=1.(7′)(2)以A、B、Q為三個頂點作平行四邊形ABQC,則BQ+BA=BC∵(BQ+BA)?QA=0,∴BC?QC=0,∴平行四邊形ABQC是菱形,∴|BA|=|BQ|.(8′)∴點Q在圓(x+5)2+y2=100上.解方程組(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)6.(不等式選講選做題)

已知實數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為______.答案:因為a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當(dāng)ay=bx時取等號,所以ax+by的最大值為3.故為:3.7.某超市推出如下優(yōu)惠方案:

(1)一次性購物不超過100元不享受優(yōu)惠;

(2)一次性購物超過100元但不超過300元的一律九折;

(3)一次性購物超過300元的一律八折,有人兩次購物分別付款80元,252元.

如果他一次性購買與上兩次相同的商品,則應(yīng)付款______.答案:該人一次性購物付款80元,據(jù)條件(1)、(2)知他沒有享受優(yōu)惠,故實際購物款為80元;另一次購物付款252元,有兩種可能,其一購物超過300元按八折計,則實際購物款為2520.8=315元.其二購物超過100元但不超過300元按九折計算,則實際購物款為2520.9=280元.故該人兩次購物總價值為395元或360元,若一次性購買這些商品應(yīng)付款316元或288元.故為316元或288元.8.已知A,B,C三點不共線,O為平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,那么λ=______.答案:由題意A,B,C三點不共線,點O是平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,∴15+23+λ=1解得λ=215故為:2159.在線性回歸模型y=bx+a+e中,下列說法正確的是()A.y=bx+a+e是一次函數(shù)B.因變量y是由自變量x唯一確定的C.隨機(jī)誤差e是由于計算不準(zhǔn)確造成的,可以通過精確計算避免隨機(jī)誤差e的產(chǎn)生D.因變量y除了受自變量x的影響外,可能還受到其它因素的影響,這些因素會導(dǎo)致隨機(jī)誤差e的產(chǎn)生答案:線性回歸是利用數(shù)理統(tǒng)計中的回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關(guān)系的一種統(tǒng)計分析方法之一,分析按照自變量和因變量之間的關(guān)系類型,可分為線性回歸分析和非線性回歸分析.A不正確,根據(jù)線性回歸方程做出的y的值是一個預(yù)報值,不是由x唯一確定,故B不正確,隨機(jī)誤差不是由于計算不準(zhǔn)造成的,故C不正確,y除了受自變量x的影響之外還受其他因素的影響,故D正確,故選D.10.在參數(shù)方程所表示的曲線上有B、C兩點,它們對應(yīng)的參數(shù)值分別為t1、t2,則線段BC的中點M對應(yīng)的參數(shù)值是()

A.

B.

C.

D.答案:B11.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()

A.變量x與y正相關(guān),u與v正相關(guān)

B.變量x與y正相關(guān),u與v負(fù)相關(guān)

C.變量x與y負(fù)相關(guān),u與v正相關(guān)

D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)答案:C12.某海域內(nèi)有一孤島,島四周的海平面(視為平面)上有一淺水區(qū)(含邊界),其邊界是長軸長為2a,短軸長為2b的橢圓,已知島上甲、乙導(dǎo)航燈的海拔高度分別為h1、h2,且兩個導(dǎo)航燈在海平面上的投影恰好落在橢圓的兩個焦點上,現(xiàn)有船只經(jīng)過該海域(船只的大小忽略不計),在船上測得甲、乙導(dǎo)航燈的仰角分別為θ1、θ2,那么船只已進(jìn)入該淺水區(qū)的判別條件是______.答案:依題意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故為:h1?cotθ1+h2?cotθ2≤2a13.O、B、C為空間四個點,又、、為空間的一個基底,則()

A.O、A、B、C四點不共線

B.O、A、B、C四點共面,但不共線

C.O、A、B、C四點中任意三點不共線

D.O、A、B、C四點不共面答案:D14.

已知向量

=(4,3),=(1,2),若向量

+k

-

垂直,則k的值為(

)A.

233B.7C.-

115D.-

233答案:考點:數(shù)量積判斷兩個平面向量的垂直關(guān)系.15.若不等式logax>sin2x(a>0,a≠1)對任意x∈(0,π4)都成立,則a的取值范圍是()A.(0,π4)B.(π4,1)C.(π4,π2)D.(0,1)答案:∵當(dāng)x∈(0,π4)時,函數(shù)y=logax的圖象要恒在函數(shù)y=sin2x圖象的上方∴0<a<1如右圖所示當(dāng)y=logax的圖象過點(π4,1)時,a=π4,然后它只能向右旋轉(zhuǎn),此時a在增大,但是不能大于1故選B.16.求證:答案:證明見解析解析:證明:此題采用了從第三項開始拆項放縮的技巧,放縮拆項時,不一定從第一項開始,須根據(jù)具體題型分別對待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。17.(坐標(biāo)系與參數(shù)方程選做題)

直線x=-2+ty=1-t(t為參數(shù))被圓x=3+5cosθy=-1+5sinθ(θ為參數(shù),θ∈[0,2π))所截得的弦長為______.答案:直線和圓的參數(shù)方程化為普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦長l=225-92=82.故為:8218.設(shè)橢圓的左焦點為F,AB為橢圓中過點F的弦,試分析以AB為直徑的圓與橢圓的左準(zhǔn)線的位置關(guān)系.答案:設(shè)M為弦AB的中點(即以AB為直徑的圓的圓心),A1、B1、M1分別是A、B、M在準(zhǔn)線l上的射影(如圖).由圓錐曲線的共同性質(zhì)得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB為直徑的圓與左準(zhǔn)線相離.19.(選做題)

設(shè)集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實數(shù)a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內(nèi)直接求解情況比較多,考慮補(bǔ)集設(shè)全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內(nèi)}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內(nèi)∴,∴,∴,∴∴實數(shù)a的取值范圍為.20.拋物線x2+y=0的焦點位于()

A.y軸的負(fù)半軸上

B.y軸的正半軸上

C.x軸的負(fù)半軸上

D.x軸的正半軸上答案:A21.平面α的一個法向量為v1=(1,2,1),平面β的一個法向量為為v2=(-2,-4,10),則平面α與平面β()A.平行B.垂直C.相交D.不確定答案:∵平面α的一個法向量為v1=(1,2,1),平面β的一個法向量為v2=(-2,-4,10),∵v1?v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故選B22.下列程序表示的算法是輾轉(zhuǎn)相除法,請在空白處填上相應(yīng)語句:

(1)處填______;

(2)處填______.答案:∵程序表示的算法是輾轉(zhuǎn)相除法,根據(jù)輾轉(zhuǎn)相除法,先求出m除以n的余數(shù),然后利用輾轉(zhuǎn)相除法,將n的值賦給m,將余數(shù)賦給n,一直算到余數(shù)為零時m的值即可,∴(1)處應(yīng)該為r=mMODn;(2)處應(yīng)該為r=0.故為r=mMODn;r=0.23.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進(jìn)行檢測,這種抽樣方法是()

A.簡單隨機(jī)抽樣

B.系統(tǒng)抽樣

C.分層抽樣

D.其它抽樣方法答案:B24.直線x=-3+ty=1-t(t是參數(shù))被圓x=5cosθy=5sinθ(θ是參數(shù))所截得的弦長是______.答案:把直線和圓的參數(shù)方程化為普通方程得:直線x+y+2=0,圓x2+y2=25,畫出函數(shù)圖象,如圖所示:過圓心O(0,0)作OC⊥AB,根據(jù)垂徑定理得到:AC=BC=12AB,連接OA,則|OA|=5,且圓心O到直線x+y+2=0的距離|OC|=|2|2=2,在直角△ACO中,根據(jù)勾股定理得:AC=23,所以AB=223,則直線被圓截得的弦長為223.故為:22325.山東魯潔棉業(yè)公司的科研人員在7塊并排、形狀大小相同的試驗田上對某棉花新品種進(jìn)行施化肥量x對產(chǎn)量y影響的試驗,得到如下表所示的一組數(shù)據(jù)(單位:kg).

施化肥量x15202530354045棉花產(chǎn)量y330345365405445450455(1)畫出散點圖;

(2)判斷是否具有相關(guān)關(guān)系.答案:(1)根據(jù)已知表格中的數(shù)據(jù)可得施化肥量x和產(chǎn)量y的散點圖如下所示:(2)根據(jù)(1)中散點圖可知,各組數(shù)據(jù)對應(yīng)點大致分布在一個條形區(qū)域內(nèi)(一條直線附近)故施化肥量x和產(chǎn)量y具有線性相關(guān)關(guān)系.26.已知隨機(jī)變量ξ的數(shù)學(xué)期望Eξ=0.05且η=5ξ+1,則Eη等于()

A.1.15

B.1.25

C.0.75

D.2.5答案:B27.對于空間四點A、B、C、D,命題p:AB=xAC+yAD,且x+y=1;命題q:A、B、C、D四點共面,則命題p是命題q的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件答案:根據(jù)命題p:AB=xAC+yAD,且x+y=1,可得AB

、AC

、AD

共面,從而可得命題q:A、B、C、D四點共面成立,故命題p是命題q的充分條件.根據(jù)命題q:A、B、C、D四點共面,可得A、B、C、D四點有可能在同一條直線上,若AB=xAC+yAD,則x+y不一定等于1,故命題p不是命題q的必要條件.綜上,可得命題p是命題q的充分不必要條件.故選:A.28.如圖,花園中間是噴水池,噴水池周圍的A、B、C、D區(qū)域種植草皮,要求相鄰的區(qū)域種不同顏色的草皮,現(xiàn)有4種不同顏色的草皮可供選用,則共有______種不同的種植方法(以數(shù)字作答).答案:若AD相同,有4×(3+3×2)種種植方法,若AD不同,有4×3×(2+2×1)種種植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84種不同方法.故為84.29.已知圓的極坐標(biāo)方程為ρ=4cosθ,圓心為C,點P的極坐標(biāo)為(4,π3),則|CP|=______.答案:圓的極坐標(biāo)方程為ρ=4cosθ,圓的方程為:x2+y2=4x,圓心為C(2,0),點P的極坐標(biāo)為(4,π3),所以P的直角坐標(biāo)(2,23),所以|CP|=(2-2)2+(23-0)2=23.故為:23.30.圓x2+y2=1和圓x2+y2-6y+5=0的位置關(guān)系是()

A.外切

B.內(nèi)切

C.外離

D.內(nèi)含答案:A31.下列函數(shù)f(x)與g(x)表示同一函數(shù)的是

()A.f(x)=x0與g(x)=1B.f(x)=2lgx與g(x)=lgx2C.f(x)=|x|與g(x)=(x)2D.f(x)=x與g(x)=3x3答案:A、∵f(x)=x0,其定義域為{x|x≠0},而g(x)的定義域為R,故A錯誤;B、∵f(x)=2lgx,的定義域為{x|x>0},而g(x)=lgx2的定義域為R,故B錯誤;C、∵f(x)=|x|與g(x)=(x)2=x,其中f(x)的定義域為R,g(x)的定義域為{x|x≥0},故C錯誤;D、∵f(x)=x與g(x)=3x3=x,其中f(x)與g(x)的定義域為R,故D正確.故選D.32.定義在R上的二次函數(shù)y=f(x)在(0,2)上單調(diào)遞減,其圖象關(guān)于直線x=2對稱,則下列式子可以成立的是()

A.

B.

C.

D.答案:D33.執(zhí)行如圖的程序框圖,若p=15,則輸出的n=______.答案:當(dāng)n=1時,S=2,n=2;當(dāng)n=2時,S=6,n=3;當(dāng)n=3時,S=14,n=4;當(dāng)n=4時,S=30,n=5;故最后輸出的n值為5故為:534.雙曲線的中心是原點O,它的虛軸長為26,右焦點為F(c,0)(c>0),直線l:x=a2c與x軸交于點A,且|OF|=3|OA|.過點F的直線與雙曲線交于P、Q兩點.

(Ⅰ)求雙曲線的方程;

(Ⅱ)若AP?AQ=0,求直線PQ的方程.答案:解.(Ⅰ)由題意,設(shè)曲線的方程為x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以雙曲線的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(xiàn)(3,0),當(dāng)直線PQ與x軸垂直時,PQ方程為x=3.此時,AP?AQ≠0,應(yīng)舍去.當(dāng)直線PQ與x軸不垂直時,設(shè)直線PQ的方程為y=k(x-3).由方程組x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于過點F的直線與雙曲線交于P、Q兩點,則k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)設(shè)P(x1,y1),Q(x2,y2),則x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直線PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP?AQ=0,∴(x1-1,y1)?(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22滿足(*)∴直線PQ的方程為x-2y-3=0或x+2y-3=035.計算機(jī)的程序設(shè)計語言很多,但各種程序語言都包含下列基本的算法語句:______,______,______,______,______.答案:計算機(jī)的程序設(shè)計語言很多,但各種程序語言都包含下列基本的算法語句:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.故為:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.36.命題“12既是4的倍數(shù),又是3的倍數(shù)”的形式是()A.p∨qB.p∧qC.¬pD.簡單命題答案:命題“12既是4的倍數(shù),又是3的倍數(shù)”可轉(zhuǎn)化成“12是4的倍數(shù)且12是3的倍數(shù)”故是p且q的形式;故選B.37.復(fù)數(shù)1+i(i為虛數(shù)單位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故選A.38.若a,b∈R,求證:≤+.答案:證明略解析:證明

當(dāng)|a+b|=0時,不等式顯然成立.當(dāng)|a+b|≠0時,由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.39.已知圓柱的軸截面周長為6,體積為V,則下列關(guān)系式總成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:設(shè)圓柱的底面半徑為r,高為h,由題意得:4r+2h=6,即2r+h=3,∴體積為V=πr2h≤π[13(r+r+h)]2=π×(33)2=π當(dāng)且僅當(dāng)r=h時取等號,由此可得V≤π恒成立故選:B40.

已知拋物線y2=2px(p>0)的焦點為F,過F的直線交y軸正半軸于點P,交拋物線于A,B兩點,其中點A在第一象限,若,,,則μ的取值范圍是()

A.[1,]

B.[,2]

C.[2,3]

D.[3,4]答案:B41.已知直線l1:y=kx+(k<0=被圓x2+y2=4截得的弦長為,則l1與直線l2:y=(2+)x的夾角的大小是()

A.30°

B.45°

C.60°

D.75°答案:B42.命題“p:任意x∈R,都有x≥2”的否定是______.答案:命題“任意x∈R,都有x≥2”是全稱命題,否定時將量詞對任意的x∈R變?yōu)榇嬖趯崝?shù)x,再將不等號≥變?yōu)椋技纯桑蕿椋捍嬖趯崝?shù)x,使得x<2.43.半徑分別為1和2的兩圓外切,作半徑為3的圓與這兩圓均相切,一共可作()個.

A.2

B.3

C.4

D.5答案:D44.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是

______.答案:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故為:若a+b不是偶數(shù),則a,b不都是奇數(shù).45.已知,求證:.答案:證明略解析:因為是輪換對稱不等式,可考慮由局部證整體.,相加整理得.當(dāng)且僅當(dāng)時等號成立.【名師指引】綜合法證明不等式常用兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這一結(jié)論,運用時要結(jié)合題目條件,有時要適當(dāng)變形.46.直線y=3x+1的斜率是()A.1B.2C.3D.4答案:因為直線y=3x+1是直線的斜截式方程,所以直線的斜率是3.故選C.47.如圖,正六邊形ABCDEF中,=()

A.

B.

C.

D.

答案:D48.在對兩個變量x,y進(jìn)行線性回歸分析時,有下列步驟:

①對所求出的回歸直線方程作出解釋;

②收集數(shù)據(jù)(xi,yi),i=1,2,…,n;

③求線性回歸方程;

④求相關(guān)系數(shù);

⑤根據(jù)所搜集的數(shù)據(jù)繪制散點圖.

如果根據(jù)可形性要求能夠作出變量x,y具有線性相關(guān)結(jié)論,則在下列操作順序中正確的是()

A.①②⑤③④

B.③②④⑤①

C.②④③①⑤

D.②⑤④③①答案:D49.復(fù)數(shù)32i+11-i的虛部是______.答案:復(fù)數(shù)32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴復(fù)數(shù)的虛部是2,故為:250.設(shè)集合A={1,2,3,4},集合B={1,3,5,7},則集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故選B.第3卷一.綜合題(共50題)1.用數(shù)學(xué)歸納法證明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)答案:證明:①n=1時,左邊=2,右邊=2,等式成立;②假設(shè)n=k時,結(jié)論成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2則n=k+1時,等式左邊=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=k(3k+1)2+3k+2=(k+1)(3k+4)2故n=k+1時,等式成立由①②可知:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)成立2.如圖,圓周上按順時針方向標(biāo)有1,2,3,4,5五個點.一只青蛙按順時針方向繞圓從一個點跳到另一個點,若它停在奇數(shù)點上,則下次只能跳一個點;若停在偶數(shù)點上,則跳兩個點.該青蛙從“5”這點起跳,經(jīng)2

011次跳后它停在的點對應(yīng)的數(shù)字是______.答案:起始點為5,按照規(guī)則,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循環(huán)出現(xiàn),而2011=3×670+1.故經(jīng)2011次跳后停在的點是1.故為13.已知直線l1:3x-y+2=0,l2:3x+3y-5=0,則直線l1與l2的夾角是______.答案:因為直線l1的斜率為3,故傾斜角為60°,直線l2的斜率為-3,傾斜角為120°,故兩直線的夾角為60°,即兩直線的夾角為π3,故為

π3.4.若有以下說法:

①相等向量的模相等;

②若a和b都是單位向量,則a=b;

③對于任意的a和b,|a+b|≤|a|+|b|恒成立;

④若a∥b,c∥b,則a∥c.

其中正確的說法序號是()A.①③B.①④C.②③D.③④答案:根據(jù)定義,大小相等且方向相同的兩個向量相等.因此相等向量的模相等,故①正確;因為單位向量的模等于1,而方向不確定.所以若a和b都是單位向量,則不一定有a=b成立,故②不正確;根據(jù)向量加法的三角形法則,可得對于任意的a和b,都有|a+b|≤|a|+|b|成立,當(dāng)且僅當(dāng)a和b方向相同時等號成立,故③正確;若b=0,則有a∥b且c∥b,但是a∥c不成立,故④不正確.綜上所述,正確的命題是①③故選:A5.極坐標(biāo)方程pcosθ=表示()

A.一條平行于x軸的直線

B.一條垂直于x軸的直線

C.一個圓

D.一條拋物線答案:B6.用秦九韶算法求多項式f(x)=8x7+5x6+3x4+2x+1,當(dāng)x=2時的值.答案:根據(jù)秦九韶算法,把多項式改寫成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴當(dāng)x=2時,多項式的值為1397.7.如果雙曲線的半實軸長為2,焦距為6,那么該雙曲線的離心率是()

A.

B.

C.

D.2答案:C8.一直線傾斜角的正切值為34,且過點P(1,2),則直線方程為______.答案:因為直線傾斜角的正切值為34,即k=3,又直線過點P(1,2),所以直線的點斜式方程為y-2=34(x-1),整理得,3x-4y+5=0.故為3x-4y+5=0.9.若A、B兩點的極坐標(biāo)為A(4

π3),B(6,0),則AB中點的極坐標(biāo)是

______(極角用反三角函數(shù)值表示)答案:A的直角坐標(biāo)為:(2,23),所以AB的中點坐標(biāo)為:(4,3)所以極徑為:19;極角為:α,tanα=34所以α=arctan34;AB中點的極坐標(biāo)是:(19,

arctan34)故為:(19,

arctan34)10.直線(3+4)x+(4-6)y-14-2=0(∈R)恒過定點A,則點A的坐標(biāo)為(

)。答案:(2,-1)11.在極坐標(biāo)系中與圓ρ=4sinθ相切的一條直線的方程為()

A.ρcosθ=2

B.ρsinθ=2

C.ρ=4sin(θ+)

D.ρ=4sin(θ-)答案:A12.確定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由題意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故為:{5}13.用數(shù)學(xué)歸納法證明1+2+3+…+n2=,則當(dāng)n=k+1時左端應(yīng)在n=k的基礎(chǔ)上加上()

A.k2+1

B.(k+1)2

C.

D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D14.等邊三角形ABC中,P在線段AB上,且AP=λAB,若CP?AB=PA?PB,則實數(shù)λ的值是______.答案:設(shè)等邊三角形ABC的邊長為1.則|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP?AB=(CA+AP)?AB=CA?AB+

AP?AB=PA?PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化簡-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故為:2-2215.①某尋呼臺一小時內(nèi)收到的尋呼次數(shù)X;

②長江上某水文站觀察到一天中的水位X;

③某超市一天中的顧客量X.

其中的X是連續(xù)型隨機(jī)變量的是()

A.①

B.②

C.③

D.①②③答案:B16.l1,l2,l3是空間三條不同的直線,則下列命題正確的是[

]A.l1⊥l2,l2⊥l3l1∥l3

B.l1⊥l2,l2∥l3l1⊥l3

C.l1∥l2∥l3l1,l2,l3共面

D.l1,l2,l3共點l1,l2,l3共面答案:B17.雙曲線x225-y29=1的兩個焦點分別是F1,F(xiàn)2,雙曲線上一點P到F1的距離是12,則P到F2的距離是()A.17B.7C.7或17D.2或22答案:由題意,a=5,則由雙曲線的定義可知PF1-PF2=±10,∴PF2=2或22,故選D.18.選修4-4:坐標(biāo)系與參數(shù)方程

已知極點O與原點重合,極軸與x軸的正半軸重合.點A,B的極坐標(biāo)分別為(2,π),(22,π4),曲線C的參數(shù)方程為答案:(Ⅰ)S△AOB=12×2×219.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,證明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)?(b1+b2+…+bnn).當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時等號成立.答案:證明不妨設(shè)a1≤a2≤…≤an,b1≥b2≥…≥bn.則由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.將上述n個式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式兩邊除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等號當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時成立.20.已知△ABC是邊長為2a的正三角形,那么它的斜二側(cè)所畫直觀圖△A′B′C′的面積為()

A.a(chǎn)2

B.a(chǎn)2

C.a(chǎn)2

D.a(chǎn)2答案:C21.圖為一個幾何體的三視國科,尺寸如圖所示,則該幾何體的體積為()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由圖中數(shù)據(jù),下部的正三棱柱的高是3,底面是一個正三角形,其邊長為2,高為3,故其體積為3×12×2×3=33上部的球體直徑為1,故其半徑為12,其體積為4π3×(12)3=π6故組合體的體積是33+π6故選C22.已知|log12x+4i|≥5,則實數(shù)x

的取值范圍是______.答案:由題意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴則實數(shù)x

的取值范圍是0<x≤18或x≥8.故為:0<x≤18或x≥8.23.如圖是《集合》的知識結(jié)構(gòu)圖,如果要加入“子集”,那么應(yīng)該放在()

A.“集合”的下位

B.“含義與表示”的下位

C.“基本關(guān)系”的下位

D.“基本運算”的下位

答案:C24.已知A、B、M三點不共線,對于平面ABM外的任意一點O,確定在下列條件下,點P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據(jù)空間向量共面的推論,P位于平面ABM內(nèi)的充要條件是,∴P與A、B、M不共面.25.已知定點A(12.0),M為曲線x=6+2cosθy=2sinθ上的動點,若AP=2AM,試求動點P的軌跡C的方程.答案:設(shè)M(6+2cosθ,2sinθ),動點(x,y)由AP=2AM,即M為線段AP的中點故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴動點P的軌跡C的方程為x2+y2=1626.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ27.已知拋物線x2=4y的焦點為F,A、B是拋物線上的兩動點,且AF=λFB(λ>0).過A、B兩點分別作拋物線的切線,設(shè)其交點為M.

(I)證明FM.AB為定值;

(II)設(shè)△ABM的面積為S,寫出S=f(λ)的表達(dá)式,并求S的最小值.答案:(1)設(shè)A(x1,y1),B(x2,y2),M(xo,yo),焦點F(0,1),準(zhǔn)線方程為y=-1,顯然AB斜率存在且過F(0,1)設(shè)其直線方程為y=kx+1,聯(lián)立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線4y=x2上任意一點斜率為y'=x2,則易得切線AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯(lián)立方程易解得交點M坐標(biāo),xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,F(xiàn)M=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因為|AF|、|BF|分別等于A、B到拋物線準(zhǔn)線y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當(dāng)λ=1時,S取得最小值4.28.用秦九韶算法求多項式

在的值.答案:.解析:可根據(jù)秦九韶算法原理,將所給多項式改寫,然后由內(nèi)到外逐次計算即可.

而,所以有,,,,,.即.【名師指引】利用秦九韶算法計算多項式值關(guān)鍵是能正確地將所給多項式改寫,然后由內(nèi)到外逐次計算,由于后項計算需用到前項的結(jié)果,故應(yīng)認(rèn)真、細(xì)心,確保中間結(jié)果的準(zhǔn)確性.29.若向量,則這兩個向量的位置關(guān)系是___________。答案:垂直30.某項選拔共有四輪考核,每輪設(shè)有一個問題,能正確回答問題者進(jìn)入下一輪考核,否則

即被淘汰.已知某選手能正確回答第一、二、三、四輪的問題的概率分別為、、、,且各輪問題能否正確回答互不影響.

(Ⅰ)求該選手進(jìn)入第四輪才被淘汰的概率;

(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率.

(注:本小題結(jié)果可用分?jǐn)?shù)表示)答案:(1)該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.解析:(Ⅰ)記“該選手能正確回答第輪的問題”的事件為,則,,,,該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.31.已知點P是以F1、F2為左、右焦點的雙曲線(a>0,b>0)左支上一點,且滿足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線的離心率為()

A.

B.

C.

D.答案:D32.設(shè)非零向量、、滿足||=||=||,+=,則<,>=()

A.150°

B.120°

C.60°

D.30°答案:B33.正方形ABCD的邊長為1,=,=,則|+|=(

A.0

B.2

C.

D.2答案:C34.將(x+y+z)5展開合并同類項后共有______項,其中x3yz項的系數(shù)是______.答案:將(x+y+z)5展開合并同類項后,每一項都是m?xa?yb?zc

的形式,且a+b+c=5,其中,m是實數(shù),a、b、c∈N,構(gòu)造8個完全一樣的小球模型,分成3組,每組至少一個,共有分法C27種,每一組中都去掉一個小球的數(shù)目分別作為(x+y+z)5的展開式中每一項中x,y,z各字母的次數(shù),小球分組模型與各項的次數(shù)是一一對應(yīng)的.故將(x+y+z)5展開合并同類項后共有C27=21項.把(x+y+z)5的展開式看成5個因式(x+y+z)的乘積形式.從中任意選3個因式,這3個因式都取x,另外的2個因式分別取y、z,相乘即得含x3yz項,故含x3yz項的系數(shù)為C35=20,故為21;20.35.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),則實數(shù)λ的值是

______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論